Skip to main content

2016 | OriginalPaper | Buchkapitel

4. Degassing Processes and Chemistry

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Degassing of volatile-bearing solids requires addition of energy in order to liberate the volatile elements from various compounds contained within the (initially) meteoritic rocks. There are two main sources of this energy: 1) that associated with the kinetic energy of impacting bodies and 2) heat from within the Earth, either in shallow, hydrothermal settings or in more deep-seated magmatic settings. The former energy source is most important for larger objects which arrive at the solid surface retaining most of their velocity. The latter become important for solid materials that survive passage through the atmosphere and impact at the surface. These surviving fragments may be heated during the Hadean equivalent of subduction (whatever that might entail), probably under hydrothermal conditions at shallow depth, or during magmagenesis in the upper mantle. The conditions of impact for larger objects, and the probable compositions of the impacting material, suggest production and maintenance of a strongly reducing atmosphere from an initial but short-lived high temperature phase, followed by a longer period of relatively low temperature atmospheric processing. The overall result is the formation of reduced carbon and nitrogen compounds that rain out into the primordial (recondensed) ocean not long after the impact. The hydrothermal processing of meteoritic “survivors” takes place under conditions of temperature, hydration and pressure conducive to the initial formation of methane and ammonia, which are then processed in the atmosphere into additional higher molecular weight organics, which also rain out into the ocean. The material that ends up in the magmagenic zone, where silicate melts are produced in the upper mantle, will initially be processed with some amount of meteoritic iron present, leading to the formation and release of additional reduced gases as well as some more oxidized gases. These will enter the atmosphere resulting from the first two processes, leading to still more production of reduced CHNO compounds. The result is an ocean enriched in reduced organic compounds similar to what would be expected from the Miller-Urey experiment. The atmosphere would be maintained as a largely reduced entity, although the reduced gases would be unstable to photochemical processing. Undoubtedly some carbon dioxide would have been produced and be present in the atmosphere as well.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Ahrens TJ, O’Keefe JD, Lange MA (1989) Formation of atmospheres during accretion of the terrestrial planets. In: Atreya SK, Pollack JB, Matthews MS (eds) Origin and evolution of planetary and satellite atmospheres. University of Arizona Press, Tucson, pp 328–385 Ahrens TJ, O’Keefe JD, Lange MA (1989) Formation of atmospheres during accretion of the terrestrial planets. In: Atreya SK, Pollack JB, Matthews MS (eds) Origin and evolution of planetary and satellite atmospheres. University of Arizona Press, Tucson, pp 328–385
Zurück zum Zitat Cameron AGW (1997) The origin of the Moon and the single impact hypothesis. Icarus 126:126–137CrossRef Cameron AGW (1997) The origin of the Moon and the single impact hypothesis. Icarus 126:126–137CrossRef
Zurück zum Zitat Canup RM (2004) Dynamics of lunar formation. Annu Rev Astron Astrophys 42:441–475CrossRef Canup RM (2004) Dynamics of lunar formation. Annu Rev Astron Astrophys 42:441–475CrossRef
Zurück zum Zitat Cruse AM, Seewald JS (2006) Geochemistry of low molecular weight hydrocarbons in hydrothermal fluids from Middle Valley, northern Juan de Fuca Ridge. Geochim Cosmochim Acta 70:2073–2092CrossRef Cruse AM, Seewald JS (2006) Geochemistry of low molecular weight hydrocarbons in hydrothermal fluids from Middle Valley, northern Juan de Fuca Ridge. Geochim Cosmochim Acta 70:2073–2092CrossRef
Zurück zum Zitat Gerlach TM (1993) Thermodynamic evaluation and restoration of volcanic gas analyses: an example based on modern collection and analytical methods. Geochem J 27:305–322CrossRef Gerlach TM (1993) Thermodynamic evaluation and restoration of volcanic gas analyses: an example based on modern collection and analytical methods. Geochem J 27:305–322CrossRef
Zurück zum Zitat Gomes R, Levison HF, Tsiganis K, Morbidelli A (2005) Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets. Nature 435:466–469CrossRef Gomes R, Levison HF, Tsiganis K, Morbidelli A (2005) Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets. Nature 435:466–469CrossRef
Zurück zum Zitat Halliday AN (2008) A young Moon-forming giant impact at 70–110 Ma accompanied by late-staged mixing, core formation and degassing of the Earth. Philos Trans R Soc A 366:4163–4181CrossRef Halliday AN (2008) A young Moon-forming giant impact at 70–110 Ma accompanied by late-staged mixing, core formation and degassing of the Earth. Philos Trans R Soc A 366:4163–4181CrossRef
Zurück zum Zitat Holland HD (1984) The chemical evolution of the atmosphere and oceans. Princeton University Press, Princeton, p 582 Holland HD (1984) The chemical evolution of the atmosphere and oceans. Princeton University Press, Princeton, p 582
Zurück zum Zitat Kraus RG, Root S, Lemke RW, Stein ST, Jacobsen SB, Mattsson TR (2015) Impact vaporization of planetesimal cores in the late stages of planet formation. Nature Geosci 8:269–272CrossRef Kraus RG, Root S, Lemke RW, Stein ST, Jacobsen SB, Mattsson TR (2015) Impact vaporization of planetesimal cores in the late stages of planet formation. Nature Geosci 8:269–272CrossRef
Zurück zum Zitat Melosh HJ, Collins GS (2005) Planetary science: Meteor Crater formed by low-velocity impact. Nature 434:157CrossRef Melosh HJ, Collins GS (2005) Planetary science: Meteor Crater formed by low-velocity impact. Nature 434:157CrossRef
Zurück zum Zitat Nemchin AA, Pidgeon RT, Healy D, Grange ML, Whitehouse MJ, Vaughan J (2009) The comparative behavior of apatite-zircon U-Pb systems in Apollo 14 breccias: implications for the thermal history of the Fra Mauro Formation. Meteorit Planet Sci 44:1717–1734CrossRef Nemchin AA, Pidgeon RT, Healy D, Grange ML, Whitehouse MJ, Vaughan J (2009) The comparative behavior of apatite-zircon U-Pb systems in Apollo 14 breccias: implications for the thermal history of the Fra Mauro Formation. Meteorit Planet Sci 44:1717–1734CrossRef
Zurück zum Zitat Nemchin AA, Grange ML, Pidgeon RT, Meyer C (2012) Lunar zirconology. Aust J Earth Sci 59:277–290CrossRef Nemchin AA, Grange ML, Pidgeon RT, Meyer C (2012) Lunar zirconology. Aust J Earth Sci 59:277–290CrossRef
Zurück zum Zitat Schaefer L, Fegley B Jr (2007) Outgassing of ordinary chondritic material and some of its implications for the chemistry of asteroids, planets and satellites. Icarus 186:462–483CrossRef Schaefer L, Fegley B Jr (2007) Outgassing of ordinary chondritic material and some of its implications for the chemistry of asteroids, planets and satellites. Icarus 186:462–483CrossRef
Zurück zum Zitat Schaefer L, Fegley B Jr (2010) Volatile element chemistry during metamorphism of ordinary chondritic material. Icarus 205:483–496CrossRef Schaefer L, Fegley B Jr (2010) Volatile element chemistry during metamorphism of ordinary chondritic material. Icarus 205:483–496CrossRef
Zurück zum Zitat Seewald JS (2001) Aqueous geochemistry of low molecular weight hydrocarbons at elevated temperatures and pressures: constraints from mineral buffered laboratory experiments. Geochim Cosmochim Acta 65:1641–1664CrossRef Seewald JS (2001) Aqueous geochemistry of low molecular weight hydrocarbons at elevated temperatures and pressures: constraints from mineral buffered laboratory experiments. Geochim Cosmochim Acta 65:1641–1664CrossRef
Zurück zum Zitat Seewald JS, Seyfried WE Jr, Thornton EC (1990) Organic-rich sediment alteration: an experimental and theoretical study at elevated temperatures and pressures. Appl Geochem 5:193–209CrossRef Seewald JS, Seyfried WE Jr, Thornton EC (1990) Organic-rich sediment alteration: an experimental and theoretical study at elevated temperatures and pressures. Appl Geochem 5:193–209CrossRef
Zurück zum Zitat Seewald JS, Seyfried WE Jr, Shanks WC III (1994) Variations in the chemical and stable isotope composition of carbon and sulfur species during organic-rich sediment alteration: an experimental and theoretical study of hydrothermal activity at Guaymas Basin, Gulf of California. Geochim Cosmochim Acta 58:5065–5082CrossRef Seewald JS, Seyfried WE Jr, Shanks WC III (1994) Variations in the chemical and stable isotope composition of carbon and sulfur species during organic-rich sediment alteration: an experimental and theoretical study of hydrothermal activity at Guaymas Basin, Gulf of California. Geochim Cosmochim Acta 58:5065–5082CrossRef
Zurück zum Zitat Seewald JS, Zolotov MY, McCollom T (2006) Experimental investigation of single carbon compounds under hydrothermal conditions. Geochim Cosmochim Acta 70:446–460CrossRef Seewald JS, Zolotov MY, McCollom T (2006) Experimental investigation of single carbon compounds under hydrothermal conditions. Geochim Cosmochim Acta 70:446–460CrossRef
Zurück zum Zitat Sleep NH (2010) The Hadean–Archean environment. In: Deamer D, Szostak JW (eds) The origins of life. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 35–48 Sleep NH (2010) The Hadean–Archean environment. In: Deamer D, Szostak JW (eds) The origins of life. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 35–48
Zurück zum Zitat Symonds RB, Rose WI, Bluth GJS, Gerlach TM (1994) Volcanic-gas studies: methods results and applications. Rev Mineral 30:1–66 Symonds RB, Rose WI, Bluth GJS, Gerlach TM (1994) Volcanic-gas studies: methods results and applications. Rev Mineral 30:1–66
Zurück zum Zitat Tian F, Toon OB, Pavlov AA, De Steck H (2005) A hydrogen-rich early Earth atmosphere. Science 308:1014–1017CrossRef Tian F, Toon OB, Pavlov AA, De Steck H (2005) A hydrogen-rich early Earth atmosphere. Science 308:1014–1017CrossRef
Zurück zum Zitat Zahnle K, Sleep NH (2006) Impacts and the early evolution of life. In: Thomas PJ, Hicks RD, Chyba CF, McKay CP (eds) Comets and the origin of life, 2nd edn. Springer, Berlin, pp 175–208 Zahnle K, Sleep NH (2006) Impacts and the early evolution of life. In: Thomas PJ, Hicks RD, Chyba CF, McKay CP (eds) Comets and the origin of life, 2nd edn. Springer, Berlin, pp 175–208
Zurück zum Zitat Zahnle K, Arndt N, Cockell C, Halliday A, Nisbet E, Selsis E, Sleep NH (2007) Emergence of a habitable planet. Space Sci Rev 129:35–78CrossRef Zahnle K, Arndt N, Cockell C, Halliday A, Nisbet E, Selsis E, Sleep NH (2007) Emergence of a habitable planet. Space Sci Rev 129:35–78CrossRef
Zurück zum Zitat Zahnle K, Schaefer L, Fegley B Jr (2010) Earth’s earliest atmospheres. In: Deamer D, Szostak JW (eds) The origins of life. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 49–66 Zahnle K, Schaefer L, Fegley B Jr (2010) Earth’s earliest atmospheres. In: Deamer D, Szostak JW (eds) The origins of life. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 49–66
Metadaten
Titel
Degassing Processes and Chemistry
verfasst von
George H. Shaw
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-21972-1_4