Skip to main content

2021 | OriginalPaper | Buchkapitel

Degradation of Plastics Causing Pollution Using Bacteria for Improvement of Freshwater Fish Cultivation

verfasst von : Priyadarshini Mallick, Jaydev Misra

Erschienen in: Sustainability in Environmental Engineering and Science

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Plastics are defying the natural cycle as most plastic items can take more than 400 years to decompose since they are characteristically inert and resistant to microbial attacks. Worldwide, researchers came up with the data in 2017 that mankind has contributed to approximately 8.3 billion tons of plastic, and thus, the annual plastic production is supposedly going to triple by the year 2050. On the other side, freshwater aquaculture system has been shrinking rapidly because of indiscriminate use of plastics generated from on-growing urbanization coupled with industrialization. When plastics are disposed without future consideration, it becomes the major cause of the outbreak of water pollution, causing depletion in the level of underground water sources and thus increasing the danger level for aquatic–marine life. Most critically, plastics, like polyvinyl chloride, or PVC, are extremely toxic for natural health as well as the environment because they release considerable amount of mercury, dioxins, and phthalates, which could choke health to hazards. Against this background, implementation of a particular bacteria in order to clean plastic debris adds a path-breaking tool to bioremediation. A bacterium called “Ideonella sakaiensis” is solely responsible for completely degrading polyethylene terephthalate, or PET, within a period of 6 weeks. While sequencing the genome of this bacterium to find the main biochemical contributors to the pathway of the PET hydrolytic activity, an enzyme known as PETase came into picture which is secreted by this bacterium. The enzyme creates an intermediate compound called MHET, which is absorbed by the cell and further hydrolyzed by a second enzyme. This second enzyme called MHET hydrolase eventually converts MHET into two environmentally benign monomers such as terephthalic acid and ethylene glycol. The organism then uses these obtained monomers to facilitate its growth in this process. In order to investigate harmful effects of plastic-polluted water on aquatic life after introduction of Ideonella sakaiensis, biochemical oxygen demand (BOD), dissolved oxygen content (D02), carbon dioxide content, ammonia and sulfur values have also been estimated before and after introduction of Ideonella sakaiensis. E.coli formations were used as indicators of bacterial pollution, if any, in the tank. Average temperature (67.3 °F), pH level (7.38), alkalinity (67.3 mg/L), and dissolve oxygen level (4.12 mg/L) have been found suitable for sustainable aquaculture practices. Percentage of ammonia (0.003) and nitrate (0.207) is also not congenial for good fish production. However, the presence of Escherichia coli (E.coli) inside the tank may be enough to state that the water present has been contaminated either by some domestic sewage or by plastics.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Joel FR (1995) Polymer science and technology, introduction to polymer science, vol 3, pp 4–9 Joel FR (1995) Polymer science and technology, introduction to polymer science, vol 3, pp 4–9
2.
Zurück zum Zitat Seymour RB (1989) Polymer science before and after 1899: notable developments during the life time of Mautis Dekker. J Macromol Sci chem. 26:1023–1032CrossRef Seymour RB (1989) Polymer science before and after 1899: notable developments during the life time of Mautis Dekker. J Macromol Sci chem. 26:1023–1032CrossRef
3.
Zurück zum Zitat Shimao M (2001) Biodegradation of plastics. Curr Opin Biotechnol 12:242–247CrossRef Shimao M (2001) Biodegradation of plastics. Curr Opin Biotechnol 12:242–247CrossRef
4.
Zurück zum Zitat Scott G (1990) Photo-biodegradable plastics: their role in the protection of the environment. Polym. Degrad. Stability 29:135–154CrossRef Scott G (1990) Photo-biodegradable plastics: their role in the protection of the environment. Polym. Degrad. Stability 29:135–154CrossRef
5.
Zurück zum Zitat Griffin GJL (1973) Biodegradable fillers in thermoplastics. Am Chem Soc Div Org Coat Plast Chem 33:88–92 Griffin GJL (1973) Biodegradable fillers in thermoplastics. Am Chem Soc Div Org Coat Plast Chem 33:88–92
6.
Zurück zum Zitat David C, Trojan M, Daro A (1992) Photodegradation of polyethylene: comparison of various photoinitiators in natural weathering conditions. Polym Degrad Stability 37:233–245CrossRef David C, Trojan M, Daro A (1992) Photodegradation of polyethylene: comparison of various photoinitiators in natural weathering conditions. Polym Degrad Stability 37:233–245CrossRef
7.
Zurück zum Zitat Lee BAL, Pometto HI, Fratzke A, Bailey TB (1991) Biodegradation of degradable plastic polyethylene by phanerochaete and streptomyces species. Appl Environ Microbiol 57:678–685CrossRef Lee BAL, Pometto HI, Fratzke A, Bailey TB (1991) Biodegradation of degradable plastic polyethylene by phanerochaete and streptomyces species. Appl Environ Microbiol 57:678–685CrossRef
8.
Zurück zum Zitat Ibrahim IN, Maraqa A, Hameed KM, Saadoun IM, Maswadeh HM (2011) Assessment of potential plastic-degrading fungi in Jordanian habitats. Turk J Biol 35 Ibrahim IN, Maraqa A, Hameed KM, Saadoun IM, Maswadeh HM (2011) Assessment of potential plastic-degrading fungi in Jordanian habitats. Turk J Biol 35
9.
Zurück zum Zitat Borghei M, Karbassi A, Khoramnejadian S, Oromiehie A, Javid AH (2010) Microbial biodegradable potato starch based low density polyethylene. Afric J Biotech 9(26):4075–4080 Borghei M, Karbassi A, Khoramnejadian S, Oromiehie A, Javid AH (2010) Microbial biodegradable potato starch based low density polyethylene. Afric J Biotech 9(26):4075–4080
10.
Zurück zum Zitat Kenneth EJ, Anthony L, Pometto, I, Zivko LN (1993) Degradation of degradable starch- polyethylene plastics in a compost environment. App Environ Microbiol 1155–1161 Kenneth EJ, Anthony L, Pometto, I, Zivko LN (1993) Degradation of degradable starch- polyethylene plastics in a compost environment. App Environ Microbiol 1155–1161
11.
Zurück zum Zitat Tien M, Lignin KTK (1988) Peroxidase of phanerochaete chrysosporium. Meth Enzymol 161:238–249 Tien M, Lignin KTK (1988) Peroxidase of phanerochaete chrysosporium. Meth Enzymol 161:238–249
Metadaten
Titel
Degradation of Plastics Causing Pollution Using Bacteria for Improvement of Freshwater Fish Cultivation
verfasst von
Priyadarshini Mallick
Jaydev Misra
Copyright-Jahr
2021
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-6887-9_20