Skip to main content
Erschienen in: Cellulose 2/2013

01.04.2013 | Original Paper

Degradation of TEMPO-oxidized cellulose fibers and nanofibrils by crude cellulase

verfasst von: Ikue Homma, Takuya Isogai, Tsuguyuki Saito, Akira Isogai

Erschienen in: Cellulose | Ausgabe 2/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The biodegradation behavior of 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)-oxidized cellulose fibers (TOCs) suspended in water and TEMPO-oxidized cellulose nanofibrils (TOCNs) dispersed in water by a commercial crude cellulase was studied. Products crude cellulase-treated for 0–7 days were separated into water/ethanol-insoluble and -soluble fractions. Weight recovery ratios and viscosity-average degrees of polymerization of the water/ethanol-insoluble fractions clearly decreased with crude cellulase-treatment time, showing that both TOCs and TOCNs have biodegradability. Water/ethanol-soluble fractions were subjected to size-exclusion chromatography (SEC) with photodiode array (PDA) detection to obtain SEC elution patterns detected by reflective index and UV spectra of each SEC pattern elution slice. SEC–PDA and 13C-NMR analyses showed that glucuronosyl unit-containing molecules present on microfibril surfaces in TOCs and TOCNs were primarily cleaved by hydrolyzing enzymes present as contaminants in the crude cellulase to form glucuronic acid as one of the major water-soluble degradation compounds. After the glucuronosyl units in TOCs and TOCNs were degraded and removed from microfibril surfaces by the hydrolyzing enzymes, cellulose chains newly exposed on the microfibril surfaces were rapidly hydrolyzed by cellulases predominantly present in the crude cellulase to form cellobiose. Both TOCs and TOCNs having sodium carboxyl groups are thus biodegradable, but TOCN having free carboxyl groups had clearly low biodegradability by the crude cellulase. Thus, biodegradation behavior may be controllable by controlling the structure of carboxyl group counter ions in TOCs and TOCNs.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Delattre C, Michaud P, Elboutachfaiti R, Courtois B, Courtois J (2006) Production of oligocellouronates by biodegradation of oxidized cellulose. Cellulose 13:63–71CrossRef Delattre C, Michaud P, Elboutachfaiti R, Courtois B, Courtois J (2006) Production of oligocellouronates by biodegradation of oxidized cellulose. Cellulose 13:63–71CrossRef
Zurück zum Zitat Elboutachfaiti R, Delattre C, Petit E, Michaud P (2011) Polyglucuronic acids: structures, functions and degrading enzymes. Carbohydr Polym 84:1–13CrossRef Elboutachfaiti R, Delattre C, Petit E, Michaud P (2011) Polyglucuronic acids: structures, functions and degrading enzymes. Carbohydr Polym 84:1–13CrossRef
Zurück zum Zitat Evans R, Wallis AFA (1989) Cellulose molecular weights determined by viscometry. J Appl Polym Sci 37:2331–2340CrossRef Evans R, Wallis AFA (1989) Cellulose molecular weights determined by viscometry. J Appl Polym Sci 37:2331–2340CrossRef
Zurück zum Zitat Fujisawa S, Isogai T, Isogai A (2010) pH and temperature stability of cellouronic acid. Cellulose 17:607615CrossRef Fujisawa S, Isogai T, Isogai A (2010) pH and temperature stability of cellouronic acid. Cellulose 17:607615CrossRef
Zurück zum Zitat Fujisawa S, Okita Y, Fukuzumi H, Saito T, Isogai A (2011) Preparation and characterization of TEMPO-oxidized cellulose nanofibril films with free carboxyl groups. Carbohydr Polym 84:579–583CrossRef Fujisawa S, Okita Y, Fukuzumi H, Saito T, Isogai A (2011) Preparation and characterization of TEMPO-oxidized cellulose nanofibril films with free carboxyl groups. Carbohydr Polym 84:579–583CrossRef
Zurück zum Zitat Fujisawa S, Ikeuchi T, Takeuchi M, Saito T, Isogai A (2012) Super reinforcement effect of TEMPO-oxidized cellulose nanofibrils in polystyrene matrix: optical, thermal, and mechanical studies. Biomacromolecules 13:2188–2194CrossRef Fujisawa S, Ikeuchi T, Takeuchi M, Saito T, Isogai A (2012) Super reinforcement effect of TEMPO-oxidized cellulose nanofibrils in polystyrene matrix: optical, thermal, and mechanical studies. Biomacromolecules 13:2188–2194CrossRef
Zurück zum Zitat Fukuzumi H, Saito T, Iwata T, Kumamoto Y, Isogai A (2009) Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 10:162–165CrossRef Fukuzumi H, Saito T, Iwata T, Kumamoto Y, Isogai A (2009) Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 10:162–165CrossRef
Zurück zum Zitat Fukuzumi H, Saito T, Iwamoto S, Kumamoto Y, Ohdaira T, Suzuki R, Isogai A (2011) Pore size determination of TEMPO-oxidized cellulose nanofibril films by positron annihilation lifetime spectroscopy. Biomacromolecules 12:4057–4062CrossRef Fukuzumi H, Saito T, Iwamoto S, Kumamoto Y, Ohdaira T, Suzuki R, Isogai A (2011) Pore size determination of TEMPO-oxidized cellulose nanofibril films by positron annihilation lifetime spectroscopy. Biomacromolecules 12:4057–4062CrossRef
Zurück zum Zitat Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500CrossRef Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500CrossRef
Zurück zum Zitat Hirota M, Furihata K, Saito T, Kawada T, Isogai A (2010) Glucose/glucuronic acid alternating co-polysaccharides prepared from TEMPO-oxidized native celluloses by surface peeling. Angew Chem Int Ed 49:7670–7672CrossRef Hirota M, Furihata K, Saito T, Kawada T, Isogai A (2010) Glucose/glucuronic acid alternating co-polysaccharides prepared from TEMPO-oxidized native celluloses by surface peeling. Angew Chem Int Ed 49:7670–7672CrossRef
Zurück zum Zitat Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3:71–85CrossRef Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3:71–85CrossRef
Zurück zum Zitat Iwamoto S, Kai W, Iwata T, Isogai A (2009) Elastic modulus of single cellulose nanofibrils from tunicate measured by atomic force microscopy. Biomacromolecules 10:2571–2576CrossRef Iwamoto S, Kai W, Iwata T, Isogai A (2009) Elastic modulus of single cellulose nanofibrils from tunicate measured by atomic force microscopy. Biomacromolecules 10:2571–2576CrossRef
Zurück zum Zitat Kagawa N, Tokunaga K (2009) The molar mass measurement of poly(allylamine hydrochloride) by size exclusion chromatography/multi angle light scattering method. Bunseki Kagaku 58(3):141–146CrossRef Kagawa N, Tokunaga K (2009) The molar mass measurement of poly(allylamine hydrochloride) by size exclusion chromatography/multi angle light scattering method. Bunseki Kagaku 58(3):141–146CrossRef
Zurück zum Zitat Kato Y, Habu N, Yamaguchi J, Kobayashi Y, Shibata I, Isogai A, Samejima M (2002) Biodegradation of β-1, 4-linked polyglucuronic acid (cellouronic acid). Cellulose 9:75–81CrossRef Kato Y, Habu N, Yamaguchi J, Kobayashi Y, Shibata I, Isogai A, Samejima M (2002) Biodegradation of β-1, 4-linked polyglucuronic acid (cellouronic acid). Cellulose 9:75–81CrossRef
Zurück zum Zitat Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50:5438–5466CrossRef Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50:5438–5466CrossRef
Zurück zum Zitat Konno N, Habu N, Maeda I, Azuma N, Isogai A (2006) Cellouronate (β-1,4-linked polyglucuronate) lyase from Brevundimonas sp. SH203: purification and characterization. Carbohydr Polym 64:589–596CrossRef Konno N, Habu N, Maeda I, Azuma N, Isogai A (2006) Cellouronate (β-1,4-linked polyglucuronate) lyase from Brevundimonas sp. SH203: purification and characterization. Carbohydr Polym 64:589–596CrossRef
Zurück zum Zitat Konno N, Habu N, Iihashi N, Isogai A (2008) Purification and characterization of exo-type cellouronate lyase. Cellulose 15:453–463CrossRef Konno N, Habu N, Iihashi N, Isogai A (2008) Purification and characterization of exo-type cellouronate lyase. Cellulose 15:453–463CrossRef
Zurück zum Zitat Konno N, Ishida T, Igarashi K, Fushinobu S, Habu N, Samejima M, Isogai A (2009) Crystal structure of polysaccharide lyase family 20 endo-b-1,4-glucuronan lyase from the filamentous fungus Trichoderma reesei. FEBS Lett 583:1323–1326CrossRef Konno N, Ishida T, Igarashi K, Fushinobu S, Habu N, Samejima M, Isogai A (2009) Crystal structure of polysaccharide lyase family 20 endo-b-1,4-glucuronan lyase from the filamentous fungus Trichoderma reesei. FEBS Lett 583:1323–1326CrossRef
Zurück zum Zitat Montanari S, Roumani M, Heux L, Vignon MR (2005) Topochemistry of carboxylated cellulose nanocrystals resulting from TEMPO-mediated oxidation. Macromolecules 38:1665–1671CrossRef Montanari S, Roumani M, Heux L, Vignon MR (2005) Topochemistry of carboxylated cellulose nanocrystals resulting from TEMPO-mediated oxidation. Macromolecules 38:1665–1671CrossRef
Zurück zum Zitat Nemoto J, Soyama T, Saito T, Isogai A (2012) Nanoporous networks prepared by simple air drying of aqueous TEMPO-oxidized cellulose nanofibril dispersions. Biomacromolecules 13:943–946CrossRef Nemoto J, Soyama T, Saito T, Isogai A (2012) Nanoporous networks prepared by simple air drying of aqueous TEMPO-oxidized cellulose nanofibril dispersions. Biomacromolecules 13:943–946CrossRef
Zurück zum Zitat Nishino T, Matsuda I, Hirao K (2004) All-cellulose composite. Macromolecules 37:7683–7687CrossRef Nishino T, Matsuda I, Hirao K (2004) All-cellulose composite. Macromolecules 37:7683–7687CrossRef
Zurück zum Zitat Okita Y, Saito T, Isogai A (2010) Entire surface oxidation of various cellulose microfibrils by TEMPO-mediated oxidation. Biomacromolecules 11:1696–1700CrossRef Okita Y, Saito T, Isogai A (2010) Entire surface oxidation of various cellulose microfibrils by TEMPO-mediated oxidation. Biomacromolecules 11:1696–1700CrossRef
Zurück zum Zitat Qi ZD, Saito T, Fan Y, Isogai A (2012) Multifunctional coating films by layer-by-layer deposition of cellulose and chitin nanofibrils. Biomacromolecules 13:553–558CrossRef Qi ZD, Saito T, Fan Y, Isogai A (2012) Multifunctional coating films by layer-by-layer deposition of cellulose and chitin nanofibrils. Biomacromolecules 13:553–558CrossRef
Zurück zum Zitat Saito T, Isogai A (2004) TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromolecules 5:1983–1989CrossRef Saito T, Isogai A (2004) TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromolecules 5:1983–1989CrossRef
Zurück zum Zitat Saito T, Nishiyama Y, Putaux JL, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7:1687–1691CrossRef Saito T, Nishiyama Y, Putaux JL, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7:1687–1691CrossRef
Zurück zum Zitat Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8:2485–2491CrossRef Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8:2485–2491CrossRef
Zurück zum Zitat Saito T, Hirota M, Tamura N, Kimura S, Fukuzumi H, Heux L, Isogai A (2009) Individualization of nano-sized plant cellulose fibrils by direct surface carboxylation using TEMPO catalyst under neutral conditions. Biomacromolecules 10:1992–1996CrossRef Saito T, Hirota M, Tamura N, Kimura S, Fukuzumi H, Heux L, Isogai A (2009) Individualization of nano-sized plant cellulose fibrils by direct surface carboxylation using TEMPO catalyst under neutral conditions. Biomacromolecules 10:1992–1996CrossRef
Zurück zum Zitat Saito T, Uematsu T, Kimura S, Enomae T, Isogai A (2011) Self-aligned integration of native cellulose nanofibrils towards producing diverse bulk materials. Soft Matter 7:8804–8809CrossRef Saito T, Uematsu T, Kimura S, Enomae T, Isogai A (2011) Self-aligned integration of native cellulose nanofibrils towards producing diverse bulk materials. Soft Matter 7:8804–8809CrossRef
Zurück zum Zitat Sehaqui H, Salajková M, Zhou Q, Berglund LA (2010) Mechanical performance tailoring of tough ultra-high porosity foams prepared from cellulose I nanofiber suspensions. Soft Matter 6:1824–1832CrossRef Sehaqui H, Salajková M, Zhou Q, Berglund LA (2010) Mechanical performance tailoring of tough ultra-high porosity foams prepared from cellulose I nanofiber suspensions. Soft Matter 6:1824–1832CrossRef
Zurück zum Zitat Sharples A (1971) Chapter XVIII, A. Acid hydrolysis and alcoholysis. In: Bikales NM, Segal L (eds) Cellulose and cellulose derivatives part V. Wiley, USA, pp 991–1006 Sharples A (1971) Chapter XVIII, A. Acid hydrolysis and alcoholysis. In: Bikales NM, Segal L (eds) Cellulose and cellulose derivatives part V. Wiley, USA, pp 991–1006
Zurück zum Zitat Shibata I, Yanagisawa M, Saito T, Isogai A (2006) SEC-MALS analysis of cellouronic acid prepared from regenerated cellulose by TEMPO-mediated oxidation. Cellulose 13:73–80CrossRef Shibata I, Yanagisawa M, Saito T, Isogai A (2006) SEC-MALS analysis of cellouronic acid prepared from regenerated cellulose by TEMPO-mediated oxidation. Cellulose 13:73–80CrossRef
Zurück zum Zitat Shinoda R, Saito T, Okita Y, Isogai A (2012) Relationship between length and degree of polymerization of TEMPO-oxidized cellulose nanofibrils. Biomacromolecules 13:842–849CrossRef Shinoda R, Saito T, Okita Y, Isogai A (2012) Relationship between length and degree of polymerization of TEMPO-oxidized cellulose nanofibrils. Biomacromolecules 13:842–849CrossRef
Zurück zum Zitat Wu CN, Saito T, Fujisawa S, Fukuzumi H, Isogai A (2012) Ultrastrong and high gas-barrier nanocellulose/clay-layered composites. Biomacromolecules 13:1927–1932CrossRef Wu CN, Saito T, Fujisawa S, Fukuzumi H, Isogai A (2012) Ultrastrong and high gas-barrier nanocellulose/clay-layered composites. Biomacromolecules 13:1927–1932CrossRef
Metadaten
Titel
Degradation of TEMPO-oxidized cellulose fibers and nanofibrils by crude cellulase
verfasst von
Ikue Homma
Takuya Isogai
Tsuguyuki Saito
Akira Isogai
Publikationsdatum
01.04.2013
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 2/2013
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-013-9872-z

Weitere Artikel der Ausgabe 2/2013

Cellulose 2/2013 Zur Ausgabe