Skip to main content
Erschienen in: Wireless Networks 2/2016

01.02.2016

Delay-efficient MAC protocol with traffic differentiation and run-time parameter adaptation for energy-constrained wireless sensor networks

verfasst von: Messaoud Doudou, Djamel Djenouri, Jose M. Barcelo-Ordinas, Nadjib Badache

Erschienen in: Wireless Networks | Ausgabe 2/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper presents an asynchronous cascading wake-up MAC protocol for heterogeneous traffic gathering in low-power wireless sensor networks. It jointly considers energy/delay optimization and switches between two modes, according to the traffic type and delay requirements. The first mode is high duty cycle, where energy is traded-off for a reduced latency in presence of realtime traffic (RT). The second mode is low duty cycle, which is used for non-realtime traffic and gives more priority to energy saving. The proposed protocol, DuoMAC, has many features. First, it quietly adjusts the wake-up of a node according to (1) its parent’s wake-up time and, (2) its estimated load. Second, it incorporates a service differentiation through an improved contention window adaptation to meet delay requirements. A comprehensive analysis is provided in the paper to investigate the effectiveness of the proposed protocol in comparison with some state-of-the-art energy-delay efficient duty-cycled MAC protocols, namely DMAC, LL-MAC, and Diff-MAC. The network lifetime and the maximum end-to-end packet latency are adequately modeled, and numerically analyzed. The results show that LL-MAC has the best performance in terms of energy saving, while DuoMAC outperforms all the protocols in terms of delay reduction. To balance the delay/energy objectives, a runtime parameter adaptation mechanism has been integrated to DuoMAC. The mechanism relies on a constrained optimization problem with energy minimization in the objective function, constrained by the delay required for RT. The proposed protocol has been implemented on real motes using MicaZ and TinyOS. Experimental results show that the protocol clearly outperforms LL-MAC in terms of latency reduction, and more importantly, that the runtime parameter adaptation provides additional reduction of the latency while further decreasing the energy cost.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
For a communication range of unit \(1\), two neighboring nodes must be separated by a distance of \(1/\sqrt{2}\).
 
2
The term idle listening is not explicitly mentioned in equations. It is modeled under different names that differs from a protocol to another. For example, terms \(T_{cs}\) and \(T_{up}\) in Table 1 that are common for all MAC protocols, terms \(T_{0}\) for Diff-MAC, \(T_{cl}\) and \(T_{on}\) for DuoMAC in Table 2 are all fractions of time where the node is in idle listening and the radio is consuming energy.
 
Literatur
2.
Zurück zum Zitat Bachir, A., Dohler, M., Watteyne, T., & Leung, K. K. (2010). MAC essentials for wireless sensor networks. IEEE Communications Surveys & Tutorials, 2(12), 222–248.CrossRef Bachir, A., Dohler, M., Watteyne, T., & Leung, K. K. (2010). MAC essentials for wireless sensor networks. IEEE Communications Surveys & Tutorials, 2(12), 222–248.CrossRef
3.
Zurück zum Zitat Buettner, M., Yee, G. V., Anderson, E., & Han, R. (2006). X-MAC: A short preamble MAC protocol for duty-cycled wireless sensor networks. In ACM SenSys (pp. 307–320). Buettner, M., Yee, G. V., Anderson, E., & Han, R. (2006). X-MAC: A short preamble MAC protocol for duty-cycled wireless sensor networks. In ACM SenSys (pp. 307–320).
5.
Zurück zum Zitat Ceriotti, M., Corrà, M., D’Orazio, L., Doriguzzi, R., Facchin, D., Guna, et al. (2011). Is there light at the ends of the tunnel? Wireless sensor networks for adaptive lighting in road tunnels. In IPSN (pp. 187–198). Ceriotti, M., Corrà, M., D’Orazio, L., Doriguzzi, R., Facchin, D., Guna, et al. (2011). Is there light at the ends of the tunnel? Wireless sensor networks for adaptive lighting in road tunnels. In IPSN (pp. 187–198).
6.
Zurück zum Zitat Demirkol, I., Ersoy, C., & Alagoz, F. (2006). MAC protocols for wireless sensor networks: A survey. IEEE Communications Magazine, 06, 115–121.CrossRef Demirkol, I., Ersoy, C., & Alagoz, F. (2006). MAC protocols for wireless sensor networks: A survey. IEEE Communications Magazine, 06, 115–121.CrossRef
7.
Zurück zum Zitat Dong, Q., Dargie, W., & Schill, A. (2010). The energy cost of control packets in hybrid MAC Protocols. In HPCC (pp. 609–615). Dong, Q., Dargie, W., & Schill, A. (2010). The energy cost of control packets in hybrid MAC Protocols. In HPCC (pp. 609–615).
8.
Zurück zum Zitat Dong, Q., & Dargie, W. (2012). Analysis of the cost of handover in a mobile wireless sensor network. In WWIC (pp. 315–322). Dong, Q., & Dargie, W. (2012). Analysis of the cost of handover in a mobile wireless sensor network. In WWIC (pp. 315–322).
9.
Zurück zum Zitat Dong, Q., & Dargie, W. (2013). A survey on mobility and mobility-aware MAC protocols in wireless sensor networks. IEEE Communications Surveys and Tutorials, 15(1), 88–100.CrossRef Dong, Q., & Dargie, W. (2013). A survey on mobility and mobility-aware MAC protocols in wireless sensor networks. IEEE Communications Surveys and Tutorials, 15(1), 88–100.CrossRef
10.
Zurück zum Zitat Doudou, M., Djenouri, D., & Badache, N. (2013). Survey on latency issues of asynchronous MAC protocols in delay-sensitive wireless sensor networks. IEEE Communications Surveys and Tutorials, 15(2), 528–550.CrossRef Doudou, M., Djenouri, D., & Badache, N. (2013). Survey on latency issues of asynchronous MAC protocols in delay-sensitive wireless sensor networks. IEEE Communications Surveys and Tutorials, 15(2), 528–550.CrossRef
11.
Zurück zum Zitat Doudou, M., Djenouri, D., Badache, N., & Bouabdallah, A. (2014). Synchronous contention-based MAC protocols for delay-sensitive wireless sensor networks: A review and taxonomy. Journal of Network and Computer Applications, 38, 172–184.CrossRef Doudou, M., Djenouri, D., Badache, N., & Bouabdallah, A. (2014). Synchronous contention-based MAC protocols for delay-sensitive wireless sensor networks: A review and taxonomy. Journal of Network and Computer Applications, 38, 172–184.CrossRef
12.
Zurück zum Zitat El-Hoiydi, A., & Decotignie, J. D. (2005). Low power downlink MAC protocols for infrastructure wireless sensor networks. Mobile Networks and Applications MONET, 10(6), 675–690.CrossRef El-Hoiydi, A., & Decotignie, J. D. (2005). Low power downlink MAC protocols for infrastructure wireless sensor networks. Mobile Networks and Applications MONET, 10(6), 675–690.CrossRef
13.
Zurück zum Zitat Ergen, S. C., Marco, P. D., & Fischione, C. (2009). MAC protocol engine for sensor networks. In IEEE GLOBECOM (pp. 1–8). Ergen, S. C., Marco, P. D., & Fischione, C. (2009). MAC protocol engine for sensor networks. In IEEE GLOBECOM (pp. 1–8).
14.
Zurück zum Zitat Gnawali, O., Fonseca, R., Jamieson, K., Moss, D., & Levis, P. (2009). Collection tree protocol. In ACM SenSys, Berkeley, CA, USA (pp. 1–14). Gnawali, O., Fonseca, R., Jamieson, K., Moss, D., & Levis, P. (2009). Collection tree protocol. In ACM SenSys, Berkeley, CA, USA (pp. 1–14).
15.
Zurück zum Zitat Gungor, V. C., & Hancke, G. P. (2009). Industrial wireless sensor networks: Challenges, design principles, and technical approaches. IEEE Transactions on Industrial Electronics, 56(10), 4258–4265.CrossRef Gungor, V. C., & Hancke, G. P. (2009). Industrial wireless sensor networks: Challenges, design principles, and technical approaches. IEEE Transactions on Industrial Electronics, 56(10), 4258–4265.CrossRef
16.
Zurück zum Zitat Kredo, K. I., & Mohapatra, P. (2007). Medium access control in wireless sensor networks. Computer Networks, 51(51), 961–994.CrossRefMATH Kredo, K. I., & Mohapatra, P. (2007). Medium access control in wireless sensor networks. Computer Networks, 51(51), 961–994.CrossRefMATH
17.
Zurück zum Zitat Langendoen, K. (2007). Medium access control. In H. Wu & Y. Pan (Eds.), Wireless sensor networks (Chap. 20, pp. 535–560). Netherlands: Nova Science Publishers. Langendoen, K. (2007). Medium access control. In H. Wu & Y. Pan (Eds.), Wireless sensor networks (Chap. 20, pp. 535–560). Netherlands: Nova Science Publishers.
18.
Zurück zum Zitat Langendoen, K., & Meier, A. (2010). Analyzing MAC protocols for low data-rate applications. ACM Transactions on Sensor Networks TOSN, 7(2), 10:1–10:34. Langendoen, K., & Meier, A. (2010). Analyzing MAC protocols for low data-rate applications. ACM Transactions on Sensor Networks TOSN, 7(2), 10:1–10:34.
19.
Zurück zum Zitat Lin, K., & Levis, P. (2008). Data discovery and dissemination with DIP. In ACM IPSN (pp. 433–444). Lin, K., & Levis, P. (2008). Data discovery and dissemination with DIP. In ACM IPSN (pp. 433–444).
20.
Zurück zum Zitat Lu, G., Krishnamachari, B., & Raghavendra, C. S. (2007). An adaptive energy-efficient and low-latency MAC for tree-based data gathering in sensor networks. Wireless Communications and Mobile Computing, 7(7), 863–875.CrossRef Lu, G., Krishnamachari, B., & Raghavendra, C. S. (2007). An adaptive energy-efficient and low-latency MAC for tree-based data gathering in sensor networks. Wireless Communications and Mobile Computing, 7(7), 863–875.CrossRef
21.
Zurück zum Zitat Meier, A., Woehrle, M., Zimmerling, M., & Thiele, L. (2010). Zerocal: Automatic MAC protocol calibration. In IEEE DCOSS (pp. 31–44). Meier, A., Woehrle, M., Zimmerling, M., & Thiele, L. (2010). Zerocal: Automatic MAC protocol calibration. In IEEE DCOSS (pp. 31–44).
22.
Zurück zum Zitat Munir, S., Lin, S., Hoque, E., Nirjon, S. M. S., Stankovic, J.A., & Whitehouse, K. (2010). Addressing burstiness for reliable communication and latency bound generation in wireless sensor networks. In IEEE IPSN pp. (303–314). Munir, S., Lin, S., Hoque, E., Nirjon, S. M. S., Stankovic, J.A., & Whitehouse, K. (2010). Addressing burstiness for reliable communication and latency bound generation in wireless sensor networks. In IEEE IPSN pp. (303–314).
23.
Zurück zum Zitat Park, P. G., Fischione, C., Bonivento, A., Johansson, K. H., & Sangiovanni-Vincentelli, A. L. (2011). Breath: An adaptive protocol for industrial control applications using wireless sensor networks. IEEE Transactions Mobile Computing, 10(6), 821–838.CrossRef Park, P. G., Fischione, C., Bonivento, A., Johansson, K. H., & Sangiovanni-Vincentelli, A. L. (2011). Breath: An adaptive protocol for industrial control applications using wireless sensor networks. IEEE Transactions Mobile Computing, 10(6), 821–838.CrossRef
24.
Zurück zum Zitat Peng, Y., Li, Z., Qiao, D., & Zhang, W. (2011). Delay-bounded MAC with minimal idle listening for sensor networks. In IEEE INFOCOM (pp. 1314–1322). Peng, Y., Li, Z., Qiao, D., & Zhang, W. (2011). Delay-bounded MAC with minimal idle listening for sensor networks. In IEEE INFOCOM (pp. 1314–1322).
25.
Zurück zum Zitat Polastre, J., Hill, J. L., & Culler, D. E. (2004). Versatile low power media access for wireless sensor networks. In ACM SenSys (pp. 95–107). Polastre, J., Hill, J. L., & Culler, D. E. (2004). Versatile low power media access for wireless sensor networks. In ACM SenSys (pp. 95–107).
26.
Zurück zum Zitat Saxena, N., Roy, A., & Shin, J. (2008). Dynamic duty cycle and adaptive contention window based QoS-MAC protocol for wireless multimedia sensor networks. Computer Networks, 52(13), 2532–2542.CrossRefMATH Saxena, N., Roy, A., & Shin, J. (2008). Dynamic duty cycle and adaptive contention window based QoS-MAC protocol for wireless multimedia sensor networks. Computer Networks, 52(13), 2532–2542.CrossRefMATH
27.
Zurück zum Zitat Sun, Y., Gurewitz, O., & Johnson, D. B. (2008). RI-MAC: A receiver-initiated asynchronous duty cycle MAC protocol for dynamic traffic loads in wireless sensor networks. In ACM SenSys, New York, NY, USA (pp. 1–14). Sun, Y., Gurewitz, O., & Johnson, D. B. (2008). RI-MAC: A receiver-initiated asynchronous duty cycle MAC protocol for dynamic traffic loads in wireless sensor networks. In ACM SenSys, New York, NY, USA (pp. 1–14).
28.
Zurück zum Zitat Suriyachai, P., Roedig, U., & Scott, A. (2011). A survey of MAC protocols for mission-critical applications in wireless sensor networks. IEEE Communications Surveys & Tutorials, Issue, 99, 1–25. Suriyachai, P., Roedig, U., & Scott, A. (2011). A survey of MAC protocols for mission-critical applications in wireless sensor networks. IEEE Communications Surveys & Tutorials, Issue, 99, 1–25.
29.
Zurück zum Zitat Yahya, B., & Ben-Othman, J. (2009). Towards a classification of energy aware MAC protocols for wireless sensor networks. Wireless Communications & Mobile Computing, 12(9), 1572–1607.CrossRef Yahya, B., & Ben-Othman, J. (2009). Towards a classification of energy aware MAC protocols for wireless sensor networks. Wireless Communications & Mobile Computing, 12(9), 1572–1607.CrossRef
30.
Zurück zum Zitat Yang, O., & Heinzelman, W. R. (2009). Modeling and throughput analysis for S-MAC with a finite queue capacity. In ISSNIP (pp. 409–414). Yang, O., & Heinzelman, W. R. (2009). Modeling and throughput analysis for S-MAC with a finite queue capacity. In ISSNIP (pp. 409–414).
31.
Zurück zum Zitat Ye, W., Silva, F., & Heidemann, J. (2006). Ultra-low duty cycle MAC with scheduled channel polling. In SenSys (pp. 321–334). Ye, W., Silva, F., & Heidemann, J. (2006). Ultra-low duty cycle MAC with scheduled channel polling. In SenSys (pp. 321–334).
32.
Zurück zum Zitat Ye, W., Heidemann, J., & Estrin, D. (2002). An energy-efficient MAC protocol for wireless sensor networks. INFOCOM, 3, 1567–1576. Ye, W., Heidemann, J., & Estrin, D. (2002). An energy-efficient MAC protocol for wireless sensor networks. INFOCOM, 3, 1567–1576.
33.
Zurück zum Zitat Yigitel, M. A., Incel, Ö. D., & Ersoy, C. (2011). Design and implementation of a QoS-Aware MAC protocol for wireless multimedia sensor networks. Computer Communications, 34(16), 1991–2001.CrossRef Yigitel, M. A., Incel, Ö. D., & Ersoy, C. (2011). Design and implementation of a QoS-Aware MAC protocol for wireless multimedia sensor networks. Computer Communications, 34(16), 1991–2001.CrossRef
34.
Zurück zum Zitat Yu, Q., Tan, C., & Zhou, H. (2007). A low-latency MAC protocol for wireless sensor networks. In WiCom (pp. 2816–2820). Yu, Q., Tan, C., & Zhou, H. (2007). A low-latency MAC protocol for wireless sensor networks. In WiCom (pp. 2816–2820).
35.
Zurück zum Zitat Zheng, T., Radhakrishnan, S., & Sarangan, V. (2011). Modeling and performance analysis of DMAC for wireless sensor networks. In MSWiM (pp. 119–128). Zheng, T., Radhakrishnan, S., & Sarangan, V. (2011). Modeling and performance analysis of DMAC for wireless sensor networks. In MSWiM (pp. 119–128).
36.
Zurück zum Zitat Zimmerling, M., Ferrari, F., Mottola, L., Voigt, T., & Thiele, L. (2012). Ptunes: Runtime parameter adaptation for low-power MAC protocols. In IEEE IPSN (pp. 173–184). Zimmerling, M., Ferrari, F., Mottola, L., Voigt, T., & Thiele, L. (2012). Ptunes: Runtime parameter adaptation for low-power MAC protocols. In IEEE IPSN (pp. 173–184).
Metadaten
Titel
Delay-efficient MAC protocol with traffic differentiation and run-time parameter adaptation for energy-constrained wireless sensor networks
verfasst von
Messaoud Doudou
Djamel Djenouri
Jose M. Barcelo-Ordinas
Nadjib Badache
Publikationsdatum
01.02.2016
Verlag
Springer US
Erschienen in
Wireless Networks / Ausgabe 2/2016
Print ISSN: 1022-0038
Elektronische ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-015-0965-5

Weitere Artikel der Ausgabe 2/2016

Wireless Networks 2/2016 Zur Ausgabe

Neuer Inhalt