Skip to main content

2018 | OriginalPaper | Buchkapitel

12. Dendrimer-Based Nanoplatforms for SPECT Imaging Applications

verfasst von : Lingzhou Zhao, Xiangyang Shi, Jinhua Zhao

Erschienen in: Nanotechnology Characterization Tools for Biosensing and Medical Diagnosis

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Dendrimers can be functionalized with multiple imaging and therapeutic moieties to establish dendrimer-based nanoplatforms for various applications. In this chapter we describe the recent progress in dendrimer-based nanomaterials for SPECT imaging applications with different purposes.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Collins FS, Varmus H (2015) A new initiative on precision medicine. N Engl J Med 372(9):793–795CrossRef Collins FS, Varmus H (2015) A new initiative on precision medicine. N Engl J Med 372(9):793–795CrossRef
2.
Zurück zum Zitat Jameson JL, Longo DL (2015) Precision medicine – personalized, problematic, and promising. N Engl J Med 372(23):2229–2234CrossRef Jameson JL, Longo DL (2015) Precision medicine – personalized, problematic, and promising. N Engl J Med 372(23):2229–2234CrossRef
3.
Zurück zum Zitat Weissleder R, Pittet MJ (2008) Imaging in the era of molecular oncology. Nature 452(7187):580–589CrossRef Weissleder R, Pittet MJ (2008) Imaging in the era of molecular oncology. Nature 452(7187):580–589CrossRef
4.
Zurück zum Zitat Pysz MA, Gambhir SS, Willmann JK (2010) Molecular imaging: current status and emerging strategies. Clin Radiol 65(7):500–516CrossRef Pysz MA, Gambhir SS, Willmann JK (2010) Molecular imaging: current status and emerging strategies. Clin Radiol 65(7):500–516CrossRef
5.
Zurück zum Zitat Kircher MF, Hricak H, Larson SM (2012) Molecular imaging for personalized cancer care. Mol Oncol 6(2):182–195CrossRef Kircher MF, Hricak H, Larson SM (2012) Molecular imaging for personalized cancer care. Mol Oncol 6(2):182–195CrossRef
6.
Zurück zum Zitat Naumova AV, Modo M, Moore A, Murry CE, Frank JA (2014) Clinical imaging in regenerative medicine. Nat Biotechnol 32(8):804–818CrossRef Naumova AV, Modo M, Moore A, Murry CE, Frank JA (2014) Clinical imaging in regenerative medicine. Nat Biotechnol 32(8):804–818CrossRef
7.
Zurück zum Zitat Chan KW-Y, Wong W-T (2007) Small molecular gadolinium(III) complexes as MRI contrast agents for diagnostic imaging. Coord Chem Rev 251(17–20):2428–2451CrossRef Chan KW-Y, Wong W-T (2007) Small molecular gadolinium(III) complexes as MRI contrast agents for diagnostic imaging. Coord Chem Rev 251(17–20):2428–2451CrossRef
8.
Zurück zum Zitat Li J, Zheng L, Cai H, Sun W, Shen M, Zhang G, Shi X (2013) Polyethyleneimine-mediated synthesis of folic acid-targeted iron oxide nanoparticles for in vivo tumor MR imaging. Biomaterials 34(33):8382–8392CrossRef Li J, Zheng L, Cai H, Sun W, Shen M, Zhang G, Shi X (2013) Polyethyleneimine-mediated synthesis of folic acid-targeted iron oxide nanoparticles for in vivo tumor MR imaging. Biomaterials 34(33):8382–8392CrossRef
9.
Zurück zum Zitat Jin R, Lin B, Li D, Ai H (2014) Superparamagnetic iron oxide nanoparticles for MR imaging and therapy: design considerations and clinical applications. Curr Opin Pharmacol 18:18–27CrossRef Jin R, Lin B, Li D, Ai H (2014) Superparamagnetic iron oxide nanoparticles for MR imaging and therapy: design considerations and clinical applications. Curr Opin Pharmacol 18:18–27CrossRef
10.
Zurück zum Zitat Li L, Gao F, Jiang W, Wu X, Cai Y, Tang J, Gao X, Gao F (2016) Folic acid-conjugated superparamagnetic iron oxide nanoparticles for tumor-targeting MR imaging. Drug Deliv 23(5):1726–1733 Li L, Gao F, Jiang W, Wu X, Cai Y, Tang J, Gao X, Gao F (2016) Folic acid-conjugated superparamagnetic iron oxide nanoparticles for tumor-targeting MR imaging. Drug Deliv 23(5):1726–1733
11.
Zurück zum Zitat Mustafa R, Zhou B, Yang J, Zheng L, Zhang G, Shi X (2016) Dendrimer-functionalized laponite nanodisks loaded with gadolinium for T1-weighted MR imaging applications. RSC Adv 6(97):95112–95119CrossRef Mustafa R, Zhou B, Yang J, Zheng L, Zhang G, Shi X (2016) Dendrimer-functionalized laponite nanodisks loaded with gadolinium for T1-weighted MR imaging applications. RSC Adv 6(97):95112–95119CrossRef
12.
Zurück zum Zitat Suzuki H, Oshima H, Shiraki N, Ikeya C, Shibamoto Y (2004) Comparison of two contrast materials with different iodine concentrations in enhancing the density of the aorta, portal vein and liver at multi-detector row CT: a randomized study. Eur Radiol 14(11):2099–2104CrossRef Suzuki H, Oshima H, Shiraki N, Ikeya C, Shibamoto Y (2004) Comparison of two contrast materials with different iodine concentrations in enhancing the density of the aorta, portal vein and liver at multi-detector row CT: a randomized study. Eur Radiol 14(11):2099–2104CrossRef
13.
Zurück zum Zitat Hainfeld JF, Slatkin DN, Focella TM, Smilowitz HM (2006) Gold nanoparticles: a new X-ray contrast agent. Br J Radiol 79(939):248–253CrossRef Hainfeld JF, Slatkin DN, Focella TM, Smilowitz HM (2006) Gold nanoparticles: a new X-ray contrast agent. Br J Radiol 79(939):248–253CrossRef
14.
Zurück zum Zitat Popovtzer R, Agrawal A, Kotov NA, Popovtzer A, Balter J, Carey TE, Kopelman R (2008) Targeted gold nanoparticles enable molecular ct imaging of cancer. Nano Lett 8(12):4593–4596CrossRef Popovtzer R, Agrawal A, Kotov NA, Popovtzer A, Balter J, Carey TE, Kopelman R (2008) Targeted gold nanoparticles enable molecular ct imaging of cancer. Nano Lett 8(12):4593–4596CrossRef
15.
Zurück zum Zitat Peng C, Zheng L, Chen Q, Shen M, Guo R, Wang H, Cao X, Zhang G, Shi X (2012) PEGylated dendrimer-entrapped gold nanoparticles for in vivo blood pool and tumor imaging by computed tomography. Biomaterials 33(4):1107–1119CrossRef Peng C, Zheng L, Chen Q, Shen M, Guo R, Wang H, Cao X, Zhang G, Shi X (2012) PEGylated dendrimer-entrapped gold nanoparticles for in vivo blood pool and tumor imaging by computed tomography. Biomaterials 33(4):1107–1119CrossRef
16.
Zurück zum Zitat Zhang Y, Wen S, Zhao L, Li D, Liu C, Jiang W, Gao X, Gu W, Ma N, Zhao J, Shi X, Zhao Q (2016) Ultrastable polyethyleneimine-stabilized gold nanoparticles modified with polyethylene glycol for blood pool, lymph node and tumor CT imaging. Nanoscale 8(10):5567–5577CrossRef Zhang Y, Wen S, Zhao L, Li D, Liu C, Jiang W, Gao X, Gu W, Ma N, Zhao J, Shi X, Zhao Q (2016) Ultrastable polyethyleneimine-stabilized gold nanoparticles modified with polyethylene glycol for blood pool, lymph node and tumor CT imaging. Nanoscale 8(10):5567–5577CrossRef
17.
Zurück zum Zitat Ametamey SM, Honer M, Schubiger PA (2008) Molecular imaging with PET. Chem Rev 108(5):1501–1516CrossRef Ametamey SM, Honer M, Schubiger PA (2008) Molecular imaging with PET. Chem Rev 108(5):1501–1516CrossRef
18.
Zurück zum Zitat Fletcher JW, Djulbegovic B, Soares HP, Siegel BA, Lowe VJ, Lyman GH, Coleman RE, Wahl R, Paschold JC, Avril N, Einhorn LH, Suh WW, Samson D, Delbeke D, Gorman M, Shields AF (2008) Recommendations on the use of 18F-FDG PET in oncology. J Nucl Med 49(3):480–508CrossRef Fletcher JW, Djulbegovic B, Soares HP, Siegel BA, Lowe VJ, Lyman GH, Coleman RE, Wahl R, Paschold JC, Avril N, Einhorn LH, Suh WW, Samson D, Delbeke D, Gorman M, Shields AF (2008) Recommendations on the use of 18F-FDG PET in oncology. J Nucl Med 49(3):480–508CrossRef
19.
Zurück zum Zitat Mosconi L, Mistur R, Switalski R, Tsui WH, Glodzik L, Li Y, Pirraglia E, De Santi S, Reisberg B, Wisniewski T, de Leon MJ (2009) FDG-PET changes in brain glucose metabolism from normal cognition to pathologically verified Alzheimer’s disease. Eur J Nucl Med Mol Imaging 36(5):811–822CrossRef Mosconi L, Mistur R, Switalski R, Tsui WH, Glodzik L, Li Y, Pirraglia E, De Santi S, Reisberg B, Wisniewski T, de Leon MJ (2009) FDG-PET changes in brain glucose metabolism from normal cognition to pathologically verified Alzheimer’s disease. Eur J Nucl Med Mol Imaging 36(5):811–822CrossRef
20.
Zurück zum Zitat Brindle K (2008) New approaches for imaging tumour responses to treatment. Nat Rev Cancer 8(2):94–107CrossRef Brindle K (2008) New approaches for imaging tumour responses to treatment. Nat Rev Cancer 8(2):94–107CrossRef
21.
Zurück zum Zitat Shirani J, Dilsizian V (2011) Nuclear cardiac imaging in hypertrophic cardiomyopathy. J Nucl Cardiol 18(1):123–134CrossRef Shirani J, Dilsizian V (2011) Nuclear cardiac imaging in hypertrophic cardiomyopathy. J Nucl Cardiol 18(1):123–134CrossRef
22.
Zurück zum Zitat Wang G, Stender AS, Sun W, Fang N (2010) Optical imaging of non-fluorescent nanoparticle probes in live cells. Analyst 135(2):215–221CrossRef Wang G, Stender AS, Sun W, Fang N (2010) Optical imaging of non-fluorescent nanoparticle probes in live cells. Analyst 135(2):215–221CrossRef
23.
Zurück zum Zitat Hellebust A, Richards-Kortum R (2012) Advances in molecular imaging: targeted optical contrast agents for cancer diagnostics. Nanomedicine (Lond) 7(3):429–445CrossRef Hellebust A, Richards-Kortum R (2012) Advances in molecular imaging: targeted optical contrast agents for cancer diagnostics. Nanomedicine (Lond) 7(3):429–445CrossRef
24.
Zurück zum Zitat James ML, Gambhir SS (2012) A molecular imaging primer: modalities, imaging agents, and applications. Physiol Rev 92(2):897–965CrossRef James ML, Gambhir SS (2012) A molecular imaging primer: modalities, imaging agents, and applications. Physiol Rev 92(2):897–965CrossRef
25.
Zurück zum Zitat Cai H, Li K, Shen M, Wen S, Luo Y, Peng C, Zhang G, Shi X (2012) Facile assembly of Fe3O4@Au nanocomposite particles for dual mode magnetic resonance and computed tomography imaging applications. J Mater Chem 22(30):15110–15120CrossRef Cai H, Li K, Shen M, Wen S, Luo Y, Peng C, Zhang G, Shi X (2012) Facile assembly of Fe3O4@Au nanocomposite particles for dual mode magnetic resonance and computed tomography imaging applications. J Mater Chem 22(30):15110–15120CrossRef
26.
Zurück zum Zitat Herschman HR (2003) Molecular imaging: looking at problems, seeing solutions. Science 302(5645):605–608CrossRef Herschman HR (2003) Molecular imaging: looking at problems, seeing solutions. Science 302(5645):605–608CrossRef
27.
Zurück zum Zitat Hoffman JM, Gambhir SS (2007) Molecular imaging: the vision and opportunity for radiology in the future. Radiology 244(1):39–47CrossRef Hoffman JM, Gambhir SS (2007) Molecular imaging: the vision and opportunity for radiology in the future. Radiology 244(1):39–47CrossRef
28.
Zurück zum Zitat Luo S, Zhang E, Su Y, Cheng T, Shi C (2011) A review of NIR dyes in cancer targeting and imaging. Biomaterials 32(29):7127–7138CrossRef Luo S, Zhang E, Su Y, Cheng T, Shi C (2011) A review of NIR dyes in cancer targeting and imaging. Biomaterials 32(29):7127–7138CrossRef
29.
Zurück zum Zitat Beyer T, Townsend DW, Brun T, Kinahan PE, Charron M, Roddy R, Jerin J, Young J, Byars L, Nutt R (2000) A combined PET/CT scanner for clinical oncology. J Nucl Med 41(8):1369–1379 Beyer T, Townsend DW, Brun T, Kinahan PE, Charron M, Roddy R, Jerin J, Young J, Byars L, Nutt R (2000) A combined PET/CT scanner for clinical oncology. J Nucl Med 41(8):1369–1379
30.
Zurück zum Zitat Keidar Z, Israel O, Krausz Y (2003) SPECT/CT in tumor imaging: technical aspects and clinical applications. Semin Nucl Med 33(3):205–218CrossRef Keidar Z, Israel O, Krausz Y (2003) SPECT/CT in tumor imaging: technical aspects and clinical applications. Semin Nucl Med 33(3):205–218CrossRef
31.
Zurück zum Zitat Jennings LE, Long NJ (2009) ‘Two is better than one’-probes for dual-modality molecular imaging. Chem Commun (24):3511–3524 Jennings LE, Long NJ (2009) ‘Two is better than one’-probes for dual-modality molecular imaging. Chem Commun (24):3511–3524
32.
Zurück zum Zitat Ogawa M, Regino CAS, Seidel J, Green MV, Xi W, Williams M, Kosaka N, Choyke PL, Kobayashi H (2009) Dual-modality molecular imaging using antibodies labeled with activatable fluorescence and a radionuclide for specific and quantitative targeted cancer detection. Bioconjug Chem 20(11):2177–2184CrossRef Ogawa M, Regino CAS, Seidel J, Green MV, Xi W, Williams M, Kosaka N, Choyke PL, Kobayashi H (2009) Dual-modality molecular imaging using antibodies labeled with activatable fluorescence and a radionuclide for specific and quantitative targeted cancer detection. Bioconjug Chem 20(11):2177–2184CrossRef
33.
Zurück zum Zitat Li K, Wen S, Larson AC, Shen M, Zhang Z, Chen Q, Shi X, Zhang G (2013) Multifunctional dendrimer-based nanoparticles for in vivo MR/CT dual-modal molecular imaging of breast cancer. Int J Nanomedicine 8:2589–2600CrossRef Li K, Wen S, Larson AC, Shen M, Zhang Z, Chen Q, Shi X, Zhang G (2013) Multifunctional dendrimer-based nanoparticles for in vivo MR/CT dual-modal molecular imaging of breast cancer. Int J Nanomedicine 8:2589–2600CrossRef
34.
Zurück zum Zitat Chen J, Sun Y, Chen Q, Wang L, Wang S, Tang Y, Shi X, Wang H (2016) Multifunctional gold nanocomposites designed for targeted CT/MR/optical trimodal imaging of human non-small cell lung cancer cells. Nanoscale 8(28):13568–13573CrossRef Chen J, Sun Y, Chen Q, Wang L, Wang S, Tang Y, Shi X, Wang H (2016) Multifunctional gold nanocomposites designed for targeted CT/MR/optical trimodal imaging of human non-small cell lung cancer cells. Nanoscale 8(28):13568–13573CrossRef
35.
Zurück zum Zitat Mariani G, Bruselli L, Kuwert T, Kim EE, Flotats A, Israel O, Dondi M, Watanabe N (2010) A review on the clinical uses of SPECT/CT. Eur J Nucl Med Mol Imaging 37(10):1959–1985CrossRef Mariani G, Bruselli L, Kuwert T, Kim EE, Flotats A, Israel O, Dondi M, Watanabe N (2010) A review on the clinical uses of SPECT/CT. Eur J Nucl Med Mol Imaging 37(10):1959–1985CrossRef
36.
Zurück zum Zitat Thrall MM, DeLoia JA, Gallion H, Avril N (2007) Clinical use of combined positron emission tomography and computed tomography (FDG-PET/CT) in recurrent ovarian cancer. Gynecol Oncol 105(1):17–22CrossRef Thrall MM, DeLoia JA, Gallion H, Avril N (2007) Clinical use of combined positron emission tomography and computed tomography (FDG-PET/CT) in recurrent ovarian cancer. Gynecol Oncol 105(1):17–22CrossRef
37.
Zurück zum Zitat Chiti A, Kirienko M, Grégoire V (2010) Clinical use of PET-CT data for radiotherapy planning: what are we looking for? Radiother Oncol 96(3):277–279CrossRef Chiti A, Kirienko M, Grégoire V (2010) Clinical use of PET-CT data for radiotherapy planning: what are we looking for? Radiother Oncol 96(3):277–279CrossRef
38.
Zurück zum Zitat Delso G, Fürst S, Jakoby B, Ladebeck R, Ganter C, Nekolla SG, Schwaiger M, Ziegler SI (2011) Performance measurements of the Siemens mMR integrated whole-body PET/MR scanner. J Nucl Med 52(12):1914–1922CrossRef Delso G, Fürst S, Jakoby B, Ladebeck R, Ganter C, Nekolla SG, Schwaiger M, Ziegler SI (2011) Performance measurements of the Siemens mMR integrated whole-body PET/MR scanner. J Nucl Med 52(12):1914–1922CrossRef
39.
Zurück zum Zitat Drzezga A, Souvatzoglou M, Eiber M, Beer AJ, Fürst S, Martinez-Möller A, Nekolla SG, Ziegler S, Ganter C, Rummeny EJ, Schwaiger M (2012) First clinical experience with integrated whole-body PET/MR: comparison to PET/CT in patients with oncologic diagnoses. J Nucl Med 53(6):845–855CrossRef Drzezga A, Souvatzoglou M, Eiber M, Beer AJ, Fürst S, Martinez-Möller A, Nekolla SG, Ziegler S, Ganter C, Rummeny EJ, Schwaiger M (2012) First clinical experience with integrated whole-body PET/MR: comparison to PET/CT in patients with oncologic diagnoses. J Nucl Med 53(6):845–855CrossRef
40.
Zurück zum Zitat Liong M, Lu J, Kovochich M, Xia T, Ruehm SG, Nel AE, Tamanoi F, Zink JI (2008) Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano 2(5):889–896CrossRef Liong M, Lu J, Kovochich M, Xia T, Ruehm SG, Nel AE, Tamanoi F, Zink JI (2008) Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano 2(5):889–896CrossRef
41.
Zurück zum Zitat Rubel C, Hao H, Weibo C (2015) Image-guided drug delivery with single-photon emission computed tomography: a review of literature. Curr Drug Targets 16(6):592–609CrossRef Rubel C, Hao H, Weibo C (2015) Image-guided drug delivery with single-photon emission computed tomography: a review of literature. Curr Drug Targets 16(6):592–609CrossRef
42.
Zurück zum Zitat Guo R, Shi X (2012) Dendrimers in cancer therapeutics and diagnosis. Curr Drug Metab 13(8):1097–1109CrossRef Guo R, Shi X (2012) Dendrimers in cancer therapeutics and diagnosis. Curr Drug Metab 13(8):1097–1109CrossRef
43.
Zurück zum Zitat Chen X, Gambhir SS, Cheon J (2011) Theranostic nanomedicine. Acc Chem Res 44(10):841CrossRef Chen X, Gambhir SS, Cheon J (2011) Theranostic nanomedicine. Acc Chem Res 44(10):841CrossRef
44.
Zurück zum Zitat Namiki Y, Fuchigami T, Tada N, Kawamura R, Matsunuma S, Kitamoto Y, Nakagawa M (2011) Nanomedicine for cancer: lipid-based nanostructures for drug delivery and monitoring. Acc Chem Res 44(10):1080–1093CrossRef Namiki Y, Fuchigami T, Tada N, Kawamura R, Matsunuma S, Kitamoto Y, Nakagawa M (2011) Nanomedicine for cancer: lipid-based nanostructures for drug delivery and monitoring. Acc Chem Res 44(10):1080–1093CrossRef
45.
Zurück zum Zitat Lusic H, Grinstaff MW (2013) X-ray-computed tomography contrast agents. Chem Rev 113(3):1641–1666CrossRef Lusic H, Grinstaff MW (2013) X-ray-computed tomography contrast agents. Chem Rev 113(3):1641–1666CrossRef
46.
Zurück zum Zitat Mintzer MA, Grinstaff MW (2011) Biomedical applications of dendrimers: a tutorial. Chem Soc Rev 40(1):173–190CrossRef Mintzer MA, Grinstaff MW (2011) Biomedical applications of dendrimers: a tutorial. Chem Soc Rev 40(1):173–190CrossRef
47.
Zurück zum Zitat Sun W, Mignani S, Shen M, Shi X (2016) Dendrimer-based magnetic iron oxide nanoparticles: their synthesis and biomedical applications. Drug Discov Today 21(12):1873–1885CrossRef Sun W, Mignani S, Shen M, Shi X (2016) Dendrimer-based magnetic iron oxide nanoparticles: their synthesis and biomedical applications. Drug Discov Today 21(12):1873–1885CrossRef
48.
Zurück zum Zitat Qiao Z, Shi X (2015) Dendrimer-based molecular imaging contrast agents. Prog Polym Sci 44:1–27CrossRef Qiao Z, Shi X (2015) Dendrimer-based molecular imaging contrast agents. Prog Polym Sci 44:1–27CrossRef
49.
Zurück zum Zitat Tomalia DA, Baker H, Dewald J, Hall M, Kallos G, Martin S, Roeck J, Ryder J, Smith P (1985) A new class of polymers: starburst-dendritic macromolecules. Polym J 17(1):117–132CrossRef Tomalia DA, Baker H, Dewald J, Hall M, Kallos G, Martin S, Roeck J, Ryder J, Smith P (1985) A new class of polymers: starburst-dendritic macromolecules. Polym J 17(1):117–132CrossRef
50.
Zurück zum Zitat Bosman AW, Janssen HM, Meijer EW (1999) About dendrimers: structure, physical properties, and applications. Chem Rev 99(7):1665–1688CrossRef Bosman AW, Janssen HM, Meijer EW (1999) About dendrimers: structure, physical properties, and applications. Chem Rev 99(7):1665–1688CrossRef
51.
Zurück zum Zitat Tomalia DA, Fréchet JMJ (2002) Discovery of dendrimers and dendritic polymers: a brief historical perspective. J Polym Sci Part A Polym Chem 40(16):2719–2728CrossRef Tomalia DA, Fréchet JMJ (2002) Discovery of dendrimers and dendritic polymers: a brief historical perspective. J Polym Sci Part A Polym Chem 40(16):2719–2728CrossRef
52.
Zurück zum Zitat Shen M, Shi X (2010) Dendrimer-based organic/inorganic hybrid nanoparticles in biomedical applications. Nanoscale 2(9):1596–1610CrossRef Shen M, Shi X (2010) Dendrimer-based organic/inorganic hybrid nanoparticles in biomedical applications. Nanoscale 2(9):1596–1610CrossRef
53.
Zurück zum Zitat Tang J, Sheng Y, Hu H, Shen Y (2013) Macromolecular MRI contrast agents: structures, properties and applications. Prog Polym Sci 38(3–4):462–502CrossRef Tang J, Sheng Y, Hu H, Shen Y (2013) Macromolecular MRI contrast agents: structures, properties and applications. Prog Polym Sci 38(3–4):462–502CrossRef
54.
Zurück zum Zitat Kobayashi H, Brechbiel MW (2005) Nano-sized MRI contrast agents with dendrimer cores. Adv Drug Deliv Rev 57(15):2271–2286CrossRef Kobayashi H, Brechbiel MW (2005) Nano-sized MRI contrast agents with dendrimer cores. Adv Drug Deliv Rev 57(15):2271–2286CrossRef
55.
Zurück zum Zitat Kobayashi H, Kawamoto S, Jo S-K, Bryant HL, Brechbiel MW, Star RA (2003) Macromolecular MRI contrast agents with small dendrimers: pharmacokinetic differences between sizes and cores. Bioconjug Chem 14(2):388–394CrossRef Kobayashi H, Kawamoto S, Jo S-K, Bryant HL, Brechbiel MW, Star RA (2003) Macromolecular MRI contrast agents with small dendrimers: pharmacokinetic differences between sizes and cores. Bioconjug Chem 14(2):388–394CrossRef
56.
Zurück zum Zitat Hong S, Leroueil PR, Majoros IJ, Orr BG, Baker JR Jr, Banaszak Holl MM (2007) The binding avidity of a nanoparticle-based multivalent targeted drug delivery platform. Chem Biol 14(1):107–115CrossRef Hong S, Leroueil PR, Majoros IJ, Orr BG, Baker JR Jr, Banaszak Holl MM (2007) The binding avidity of a nanoparticle-based multivalent targeted drug delivery platform. Chem Biol 14(1):107–115CrossRef
57.
Zurück zum Zitat Shukla R, Hill E, Shi X, Kim J, Muniz MC, Sun K, Baker JR (2008) Tumor microvasculature targeting with dendrimer-entrapped gold nanoparticles. Soft Matter 4(11):2160–2163CrossRef Shukla R, Hill E, Shi X, Kim J, Muniz MC, Sun K, Baker JR (2008) Tumor microvasculature targeting with dendrimer-entrapped gold nanoparticles. Soft Matter 4(11):2160–2163CrossRef
58.
Zurück zum Zitat Shi X, Wang S, Sun H, Baker JR (2007) Improved biocompatibility of surface functionalized dendrimer-entrapped gold nanoparticles. Soft Matter 3(1):71–74CrossRef Shi X, Wang S, Sun H, Baker JR (2007) Improved biocompatibility of surface functionalized dendrimer-entrapped gold nanoparticles. Soft Matter 3(1):71–74CrossRef
59.
Zurück zum Zitat Cao Y, Liu H, Shi X (2015) Targeted CT imaging of cancer cells using PEGylated low-generation dendrimer-entrapped gold nanoparticles. J Control Release 213:e138–e139CrossRef Cao Y, Liu H, Shi X (2015) Targeted CT imaging of cancer cells using PEGylated low-generation dendrimer-entrapped gold nanoparticles. J Control Release 213:e138–e139CrossRef
60.
Zurück zum Zitat Zhou B, Zheng L, Peng C, Li D, Li J, Wen S, Shen M, Zhang G, Shi X (2014) Synthesis and characterization of PEGylated polyethylenimine-entrapped gold nanoparticles for blood pool and tumor CT imaging. ACS Appl Mater Interfaces 6(19):17190–17199CrossRef Zhou B, Zheng L, Peng C, Li D, Li J, Wen S, Shen M, Zhang G, Shi X (2014) Synthesis and characterization of PEGylated polyethylenimine-entrapped gold nanoparticles for blood pool and tumor CT imaging. ACS Appl Mater Interfaces 6(19):17190–17199CrossRef
61.
Zurück zum Zitat Wang H, Zheng L, Peng C, Shen M, Shi X, Zhang G (2013) Folic acid-modified dendrimer-entrapped gold nanoparticles as nanoprobes for targeted CT imaging of human lung adencarcinoma. Biomaterials 34(2):470–480CrossRef Wang H, Zheng L, Peng C, Shen M, Shi X, Zhang G (2013) Folic acid-modified dendrimer-entrapped gold nanoparticles as nanoprobes for targeted CT imaging of human lung adencarcinoma. Biomaterials 34(2):470–480CrossRef
62.
Zurück zum Zitat Talanov VS, Regino CAS, Kobayashi H, Bernardo M, Choyke PL, Brechbiel MW (2006) Dendrimer-based nanoprobe for dual modality magnetic resonance and fluorescence imaging. Nano Lett 6(7):1459–1463CrossRef Talanov VS, Regino CAS, Kobayashi H, Bernardo M, Choyke PL, Brechbiel MW (2006) Dendrimer-based nanoprobe for dual modality magnetic resonance and fluorescence imaging. Nano Lett 6(7):1459–1463CrossRef
63.
Zurück zum Zitat Kim Y, Kim SH, Tanyeri M, Katzenellenbogen JA, Schroeder CM (2013) Dendrimer probes for enhanced photostability and localization in fluorescence imaging. Biophys J 104(7):1566–1575CrossRef Kim Y, Kim SH, Tanyeri M, Katzenellenbogen JA, Schroeder CM (2013) Dendrimer probes for enhanced photostability and localization in fluorescence imaging. Biophys J 104(7):1566–1575CrossRef
64.
Zurück zum Zitat Taratula O, Schumann C, Duong T, Taylor KL, Taratula O (2015) Dendrimer-encapsulated naphthalocyanine as a single agent-based theranostic nanoplatform for near-infrared fluorescence imaging and combinatorial anticancer phototherapy. Nanoscale 7(9):3888–3902CrossRef Taratula O, Schumann C, Duong T, Taylor KL, Taratula O (2015) Dendrimer-encapsulated naphthalocyanine as a single agent-based theranostic nanoplatform for near-infrared fluorescence imaging and combinatorial anticancer phototherapy. Nanoscale 7(9):3888–3902CrossRef
65.
Zurück zum Zitat Bryant LH Jr, Jordan EK, Bulte JWM, Herynek V, Frank JA (2002) Pharmacokinetics of a high-generation dendrimer–Gd-DOTA. Acad Radiol 9(Suppl 1):S29–S33CrossRef Bryant LH Jr, Jordan EK, Bulte JWM, Herynek V, Frank JA (2002) Pharmacokinetics of a high-generation dendrimer–Gd-DOTA. Acad Radiol 9(Suppl 1):S29–S33CrossRef
66.
Zurück zum Zitat Wen S, Li K, Cai H, Chen Q, Shen M, Huang Y, Peng C, Hou W, Zhu M, Zhang G, Shi X (2013) Multifunctional dendrimer-entrapped gold nanoparticles for dual mode CT/MR imaging applications. Biomaterials 34(5):1570–1580CrossRef Wen S, Li K, Cai H, Chen Q, Shen M, Huang Y, Peng C, Hou W, Zhu M, Zhang G, Shi X (2013) Multifunctional dendrimer-entrapped gold nanoparticles for dual mode CT/MR imaging applications. Biomaterials 34(5):1570–1580CrossRef
67.
Zurück zum Zitat Nwe K, Bernardo M, Regino CAS, Williams M, Brechbiel MW (2010) Comparison of MRI properties between derivatized DTPA and DOTA gadolinium–dendrimer conjugates. Bioorg Med Chem 18(16):5925–5931CrossRef Nwe K, Bernardo M, Regino CAS, Williams M, Brechbiel MW (2010) Comparison of MRI properties between derivatized DTPA and DOTA gadolinium–dendrimer conjugates. Bioorg Med Chem 18(16):5925–5931CrossRef
68.
Zurück zum Zitat Luo Y, Zhao L, Li X, Yang J, Guo L, Zhang G, Shen M, Zhao J, Shi X (2016) The design of a multifunctional dendrimer-based nanoplatform for targeted dual mode SPECT/MR imaging of tumors. J Mater Chem B 4(45):7220–7225CrossRef Luo Y, Zhao L, Li X, Yang J, Guo L, Zhang G, Shen M, Zhao J, Shi X (2016) The design of a multifunctional dendrimer-based nanoplatform for targeted dual mode SPECT/MR imaging of tumors. J Mater Chem B 4(45):7220–7225CrossRef
69.
Zurück zum Zitat Li X, Xiong Z, Xu X, Luo Y, Peng C, Shen M, Shi X (2016) 99mTc-labeled multifunctional low-generation dendrimer-entrapped gold nanoparticles for targeted SPECT/CT dual-mode imaging of tumors. ACS Appl Mater Interfaces 8(31):19883–19891CrossRef Li X, Xiong Z, Xu X, Luo Y, Peng C, Shen M, Shi X (2016) 99mTc-labeled multifunctional low-generation dendrimer-entrapped gold nanoparticles for targeted SPECT/CT dual-mode imaging of tumors. ACS Appl Mater Interfaces 8(31):19883–19891CrossRef
70.
Zurück zum Zitat Zhao L, Zhu J, Cheng Y, Xiong Z, Tang Y, Guo L, Shi X, Zhao J (2015) Chlorotoxin-conjugated multifunctional dendrimers labeled with radionuclide 131I for single photon emission computed tomography imaging and radiotherapy of gliomas. ACS Appl Mater Interfaces 7(35):19798–19808CrossRef Zhao L, Zhu J, Cheng Y, Xiong Z, Tang Y, Guo L, Shi X, Zhao J (2015) Chlorotoxin-conjugated multifunctional dendrimers labeled with radionuclide 131I for single photon emission computed tomography imaging and radiotherapy of gliomas. ACS Appl Mater Interfaces 7(35):19798–19808CrossRef
71.
Zurück zum Zitat Seo JW, Baek H, Mahakian LM, Kusunose J, Hamzah J, Ruoslahti E, Ferrara KW (2014) 64Cu-labeled lyp-1-dendrimer for PET-CT imaging of atherosclerotic plaque. Bioconjug Chem 25(2):231–239CrossRef Seo JW, Baek H, Mahakian LM, Kusunose J, Hamzah J, Ruoslahti E, Ferrara KW (2014) 64Cu-labeled lyp-1-dendrimer for PET-CT imaging of atherosclerotic plaque. Bioconjug Chem 25(2):231–239CrossRef
72.
Zurück zum Zitat Ghai A, Singh B, Panwar Hazari P, Schultz MK, Parmar A, Kumar P, Sharma S, Dhawan D, Kumar Mishra A (2015) Radiolabeling optimization and characterization of 68Ga labeled DOTA–polyamido-amine dendrimer conjugate – animal biodistribution and PET imaging results. Appl Radiat Isot 105:40–46CrossRef Ghai A, Singh B, Panwar Hazari P, Schultz MK, Parmar A, Kumar P, Sharma S, Dhawan D, Kumar Mishra A (2015) Radiolabeling optimization and characterization of 68Ga labeled DOTA–polyamido-amine dendrimer conjugate – animal biodistribution and PET imaging results. Appl Radiat Isot 105:40–46CrossRef
73.
Zurück zum Zitat Bulte JWM, Douglas T, Witwer B, Zhang S-C, Strable E, Lewis BK, Zywicke H, Miller B, van Gelderen P, Moskowitz BM, Duncan ID, Frank JA (2001) Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells. Nat Biotechnol 19(12):1141–1147CrossRef Bulte JWM, Douglas T, Witwer B, Zhang S-C, Strable E, Lewis BK, Zywicke H, Miller B, van Gelderen P, Moskowitz BM, Duncan ID, Frank JA (2001) Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells. Nat Biotechnol 19(12):1141–1147CrossRef
74.
Zurück zum Zitat Strable E, Bulte JWM, Moskowitz B, Vivekanandan K, Allen M, Douglas T (2001) Synthesis and characterization of soluble iron oxide–dendrimer composites. Chem Mater 13(6):2201–2209CrossRef Strable E, Bulte JWM, Moskowitz B, Vivekanandan K, Allen M, Douglas T (2001) Synthesis and characterization of soluble iron oxide–dendrimer composites. Chem Mater 13(6):2201–2209CrossRef
75.
Zurück zum Zitat Shi X, Thomas TP, Myc LA, Kotlyar A, Baker JJR (2007) Synthesis, characterization, and intracellular uptake of carboxyl-terminated poly(amidoamine) dendrimer-stabilized iron oxide nanoparticles. Phys Chem Chem Phys 9(42):5712–5720CrossRef Shi X, Thomas TP, Myc LA, Kotlyar A, Baker JJR (2007) Synthesis, characterization, and intracellular uptake of carboxyl-terminated poly(amidoamine) dendrimer-stabilized iron oxide nanoparticles. Phys Chem Chem Phys 9(42):5712–5720CrossRef
76.
Zurück zum Zitat Zhou B, Xiong Z, Zhu J, Shen M, Tang G, Peng C, Shi X (2016) PEGylated polyethylenimine-entrapped gold nanoparticles loaded with gadolinium for dual-mode CT/MR imaging applications. Nanomedicine 11(13):1639–1652CrossRef Zhou B, Xiong Z, Zhu J, Shen M, Tang G, Peng C, Shi X (2016) PEGylated polyethylenimine-entrapped gold nanoparticles loaded with gadolinium for dual-mode CT/MR imaging applications. Nanomedicine 11(13):1639–1652CrossRef
77.
Zurück zum Zitat Chen Q, Wang H, Liu H, Wen S, Peng C, Shen M, Zhang G, Shi X (2015) Multifunctional dendrimer-entrapped gold nanoparticles modified with RGD peptide for targeted computed tomography/magnetic resonance dual-modal imaging of tumors. Anal Chem 87(7):3949–3956CrossRef Chen Q, Wang H, Liu H, Wen S, Peng C, Shen M, Zhang G, Shi X (2015) Multifunctional dendrimer-entrapped gold nanoparticles modified with RGD peptide for targeted computed tomography/magnetic resonance dual-modal imaging of tumors. Anal Chem 87(7):3949–3956CrossRef
78.
Zurück zum Zitat Shaw LJ, Iskandrian AE (2004) Prognostic value of gated myocardial perfusion SPECT. J Nucl Cardiol 11(2):171–185CrossRef Shaw LJ, Iskandrian AE (2004) Prognostic value of gated myocardial perfusion SPECT. J Nucl Cardiol 11(2):171–185CrossRef
79.
Zurück zum Zitat Gnanasegaran G, Ballinger JR (2014) Molecular imaging agents for SPECT (and SPECT/CT). Eur J Nucl Med Mol Imaging 41(1):26–35CrossRef Gnanasegaran G, Ballinger JR (2014) Molecular imaging agents for SPECT (and SPECT/CT). Eur J Nucl Med Mol Imaging 41(1):26–35CrossRef
80.
Zurück zum Zitat Cutler CS, Hennkens HM, Sisay N, Huclier-Markai S, Jurisson SS (2013) Radiometals for combined imaging and therapy. Chem Rev 113(2):858–883CrossRef Cutler CS, Hennkens HM, Sisay N, Huclier-Markai S, Jurisson SS (2013) Radiometals for combined imaging and therapy. Chem Rev 113(2):858–883CrossRef
81.
Zurück zum Zitat Madsen MT (2007) Recent advances in SPECT imaging. J Nucl Med 48(4):661–673CrossRef Madsen MT (2007) Recent advances in SPECT imaging. J Nucl Med 48(4):661–673CrossRef
82.
Zurück zum Zitat Eckelman WC (2009) Unparalleled contribution of technetium-99m to medicine over 5 decades. J Am Coll Cardiol Img 2(3):364–368CrossRef Eckelman WC (2009) Unparalleled contribution of technetium-99m to medicine over 5 decades. J Am Coll Cardiol Img 2(3):364–368CrossRef
83.
Zurück zum Zitat Khalil MM, Tremoleda JL, Bayomy TB, Gsell W (2011) Molecular SPECT imaging: an overview. Int J Mol Imaging 2011:796025CrossRef Khalil MM, Tremoleda JL, Bayomy TB, Gsell W (2011) Molecular SPECT imaging: an overview. Int J Mol Imaging 2011:796025CrossRef
84.
Zurück zum Zitat Niendorf HP, Dinger JC, Haustein J, Cornelius I, Alhassan A, Clauß W (1991) Tolerance data of Gd-DTPA: a review. Eur J Radiol 13(1):15–20CrossRef Niendorf HP, Dinger JC, Haustein J, Cornelius I, Alhassan A, Clauß W (1991) Tolerance data of Gd-DTPA: a review. Eur J Radiol 13(1):15–20CrossRef
85.
Zurück zum Zitat Weinmann HJ, Brasch RC, Press WR, Wesbey GE (1984) Characteristics of gadolinium-DTPA complex: a potential NMR contrast agent. Am J Roentgenol 142(3):619–624CrossRef Weinmann HJ, Brasch RC, Press WR, Wesbey GE (1984) Characteristics of gadolinium-DTPA complex: a potential NMR contrast agent. Am J Roentgenol 142(3):619–624CrossRef
86.
Zurück zum Zitat Brix G, Semmler W, Port R, Schad LR, Layer G, Lorenz WJ (1991) Pharmacokinetic parameters in CNS Gd-DTPA enhanced MR imaging. J Comput Assist Tomogr 15(4):621–628CrossRef Brix G, Semmler W, Port R, Schad LR, Layer G, Lorenz WJ (1991) Pharmacokinetic parameters in CNS Gd-DTPA enhanced MR imaging. J Comput Assist Tomogr 15(4):621–628CrossRef
87.
Zurück zum Zitat Lorberboym M, Lampl Y, Sadeh M (2003) Correlation of 99mTc-DTPA SPECT of the blood–brain barrier with neurologic outcome after acute stroke. J Nucl Med 44(12):1898–1904 Lorberboym M, Lampl Y, Sadeh M (2003) Correlation of 99mTc-DTPA SPECT of the blood–brain barrier with neurologic outcome after acute stroke. J Nucl Med 44(12):1898–1904
88.
Zurück zum Zitat McLarty K, Cornelissen B, Cai Z, Scollard DA, Costantini DL, Done SJ, Reilly RM (2009) Micro-SPECT/CT with 111In-DTPA-pertuzumab sensitively detects trastuzumab-mediated her2 downregulation and tumor response in athymic mice bearing MDA-MB-361 human breast cancer xenografts. J Nucl Med 50(8):1340–1348CrossRef McLarty K, Cornelissen B, Cai Z, Scollard DA, Costantini DL, Done SJ, Reilly RM (2009) Micro-SPECT/CT with 111In-DTPA-pertuzumab sensitively detects trastuzumab-mediated her2 downregulation and tumor response in athymic mice bearing MDA-MB-361 human breast cancer xenografts. J Nucl Med 50(8):1340–1348CrossRef
89.
Zurück zum Zitat Bar-Shalom R, Yefremov N, Guralnik L, Keidar Z, Engel A, Nitecki S, Israel O (2006) SPECT/CT using 67Ga and 111In-labeled leukocyte scintigraphy for diagnosis of infection. J Nucl Med 47(4):587–594 Bar-Shalom R, Yefremov N, Guralnik L, Keidar Z, Engel A, Nitecki S, Israel O (2006) SPECT/CT using 67Ga and 111In-labeled leukocyte scintigraphy for diagnosis of infection. J Nucl Med 47(4):587–594
90.
Zurück zum Zitat Zhang Y, Sun Y, Xu X, Zhu H, Huang L, Zhang X, Qi Y, Shen Y-M (2010) Radiosynthesis and micro-SPECT imaging of 99mTc-dendrimer poly(amido)-amine folic acid conjugate. Bioorg Med Chem Lett 20(3):927–931CrossRef Zhang Y, Sun Y, Xu X, Zhu H, Huang L, Zhang X, Qi Y, Shen Y-M (2010) Radiosynthesis and micro-SPECT imaging of 99mTc-dendrimer poly(amido)-amine folic acid conjugate. Bioorg Med Chem Lett 20(3):927–931CrossRef
91.
Zurück zum Zitat Zhang Y, Sun Y, Xu X, Zhang X, Zhu H, Huang L, Qi Y, Shen Y-M (2010) Synthesis, biodistribution, and microsingle photon emission computed tomography (SPECT) imaging study of technetium-99m labeled pegylated dendrimer poly(amidoamine) (PAMAM)−folic acid conjugates. J Med Chem 53(8):3262–3272CrossRef Zhang Y, Sun Y, Xu X, Zhang X, Zhu H, Huang L, Qi Y, Shen Y-M (2010) Synthesis, biodistribution, and microsingle photon emission computed tomography (SPECT) imaging study of technetium-99m labeled pegylated dendrimer poly(amidoamine) (PAMAM)−folic acid conjugates. J Med Chem 53(8):3262–3272CrossRef
92.
Zurück zum Zitat Xu X, Zhang Y, Wang X, Guo X, Zhang X, Qi Y, Shen Y-M (2011) Radiosynthesis, biodistribution and micro-SPECT imaging study of dendrimer–avidin conjugate. Bioorg Med Chem 19(5):1643–1648CrossRef Xu X, Zhang Y, Wang X, Guo X, Zhang X, Qi Y, Shen Y-M (2011) Radiosynthesis, biodistribution and micro-SPECT imaging study of dendrimer–avidin conjugate. Bioorg Med Chem 19(5):1643–1648CrossRef
93.
Zurück zum Zitat Mirzaii M, Seyyedi S, Sadeghi M, Gholamzadeh Z (2010) Cadmium electrodeposition on copper substrate for cyclotron production of 111In radionuclide. J Radioanal Nucl Chem 284(2):333–339CrossRef Mirzaii M, Seyyedi S, Sadeghi M, Gholamzadeh Z (2010) Cadmium electrodeposition on copper substrate for cyclotron production of 111In radionuclide. J Radioanal Nucl Chem 284(2):333–339CrossRef
94.
Zurück zum Zitat Mamede M, Saga T, Ishimori T, Higashi T, Sato N, Kobayashi H, Brechbiel MW, Konishi J (2004) Hepatocyte targeting of 111In-labeled oligo-DNA with avidin or avidin–dendrimer complex. J Control Release 95(1):133–141CrossRef Mamede M, Saga T, Ishimori T, Higashi T, Sato N, Kobayashi H, Brechbiel MW, Konishi J (2004) Hepatocyte targeting of 111In-labeled oligo-DNA with avidin or avidin–dendrimer complex. J Control Release 95(1):133–141CrossRef
95.
Zurück zum Zitat Bindslev L, Haack-Sørensen M, Bisgaard K, Kragh L, Mortensen S, Hesse B, Kjær A, Kastrup J (2006) Labelling of human mesenchymal stem cells with indium-111 for SPECT imaging: effect on cell proliferation and differentiation. Eur J Nucl Med Mol Imaging 33(10):1171–1177CrossRef Bindslev L, Haack-Sørensen M, Bisgaard K, Kragh L, Mortensen S, Hesse B, Kjær A, Kastrup J (2006) Labelling of human mesenchymal stem cells with indium-111 for SPECT imaging: effect on cell proliferation and differentiation. Eur J Nucl Med Mol Imaging 33(10):1171–1177CrossRef
96.
Zurück zum Zitat Wong KK, Cahill JM, Frey KA, Avram AM (2010) Incremental value of 111-in pentetreotide SPECT/CT fusion imaging of neuroendocrine tumors. Acad Radiol 17(3):291–297CrossRef Wong KK, Cahill JM, Frey KA, Avram AM (2010) Incremental value of 111-in pentetreotide SPECT/CT fusion imaging of neuroendocrine tumors. Acad Radiol 17(3):291–297CrossRef
97.
Zurück zum Zitat Castaldi P, Rufini V, Treglia G, Bruno I, Perotti G, Stifano G, Barbaro B, Giordano A (2008) Impact of 111In-DTPA-octreotide SPECT/CT fusion images in the management of neuroendocrine tumours. Radiol Med 113(7):1056–1067CrossRef Castaldi P, Rufini V, Treglia G, Bruno I, Perotti G, Stifano G, Barbaro B, Giordano A (2008) Impact of 111In-DTPA-octreotide SPECT/CT fusion images in the management of neuroendocrine tumours. Radiol Med 113(7):1056–1067CrossRef
98.
Zurück zum Zitat Kojima C, Niki Y, Ogawa M, Magata Y (2014) Prolonged local retention of subcutaneously injected polymers monitored by noninvasive SPECT imaging. Int J Pharm 476(1–2):164–168CrossRef Kojima C, Niki Y, Ogawa M, Magata Y (2014) Prolonged local retention of subcutaneously injected polymers monitored by noninvasive SPECT imaging. Int J Pharm 476(1–2):164–168CrossRef
99.
Zurück zum Zitat Keshtgar MRS, Ell PJ (1999) Sentinel lymph node detection and imaging. Eur J Nucl Med 26(1):57–67CrossRef Keshtgar MRS, Ell PJ (1999) Sentinel lymph node detection and imaging. Eur J Nucl Med 26(1):57–67CrossRef
100.
Zurück zum Zitat Xie Y, Bagby TR, Cohen MS, Forrest ML (2009) Drug delivery to the lymphatic system: importance in future cancer diagnosis and therapies. Expert Opin Drug Deliv 6(8):785–792CrossRef Xie Y, Bagby TR, Cohen MS, Forrest ML (2009) Drug delivery to the lymphatic system: importance in future cancer diagnosis and therapies. Expert Opin Drug Deliv 6(8):785–792CrossRef
101.
Zurück zum Zitat Ryan GM, Kaminskas LM, Porter CJH (2014) Nano-chemotherapeutics: maximising lymphatic drug exposure to improve the treatment of lymph-metastatic cancers. J Control Release 193:241–256CrossRef Ryan GM, Kaminskas LM, Porter CJH (2014) Nano-chemotherapeutics: maximising lymphatic drug exposure to improve the treatment of lymph-metastatic cancers. J Control Release 193:241–256CrossRef
102.
Zurück zum Zitat Koyama Y, Talanov VS, Bernardo M, Hama Y, Regino CAS, Brechbiel MW, Choyke PL, Kobayashi H (2007) A dendrimer-based nanosized contrast agent dual-labeled for magnetic resonance and optical fluorescence imaging to localize the sentinel lymph node in mice. J Magn Reson Imaging 25(4):866–871CrossRef Koyama Y, Talanov VS, Bernardo M, Hama Y, Regino CAS, Brechbiel MW, Choyke PL, Kobayashi H (2007) A dendrimer-based nanosized contrast agent dual-labeled for magnetic resonance and optical fluorescence imaging to localize the sentinel lymph node in mice. J Magn Reson Imaging 25(4):866–871CrossRef
103.
Zurück zum Zitat Jain R, Dandekar P, Patravale V (2009) Diagnostic nanocarriers for sentinel lymph node imaging. J Control Release 138(2):90–102CrossRef Jain R, Dandekar P, Patravale V (2009) Diagnostic nanocarriers for sentinel lymph node imaging. J Control Release 138(2):90–102CrossRef
104.
Zurück zum Zitat Sano K, Iwamiya Y, Kurosaki T, Ogawa M, Magata Y, Sasaki H, Ohshima T, Maeda M, Mukai T (2014) Radiolabeled γ-polyglutamic acid complex as a nano-platform for sentinel lymph node imaging. J Control Release 194:310–315CrossRef Sano K, Iwamiya Y, Kurosaki T, Ogawa M, Magata Y, Sasaki H, Ohshima T, Maeda M, Mukai T (2014) Radiolabeled γ-polyglutamic acid complex as a nano-platform for sentinel lymph node imaging. J Control Release 194:310–315CrossRef
105.
Zurück zum Zitat Niki Y, Ogawa M, Makiura R, Magata Y, Kojima C (2015) Optimization of dendrimer structure for sentinel lymph node imaging: effects of generation and terminal group. Nanomedicine 11(8):2119–2127CrossRef Niki Y, Ogawa M, Makiura R, Magata Y, Kojima C (2015) Optimization of dendrimer structure for sentinel lymph node imaging: effects of generation and terminal group. Nanomedicine 11(8):2119–2127CrossRef
106.
107.
Zurück zum Zitat Mattrey RF, Aguirre DA (2003) Advances in contrast media research. Acad Radiol 10(12):1450–1460CrossRef Mattrey RF, Aguirre DA (2003) Advances in contrast media research. Acad Radiol 10(12):1450–1460CrossRef
108.
Zurück zum Zitat Hallouard F, Anton N, Choquet P, Constantinesco A, Vandamme T (2010) Iodinated blood pool contrast media for preclinical X-ray imaging applications – a review. Biomaterials 31(24):6249–6268CrossRef Hallouard F, Anton N, Choquet P, Constantinesco A, Vandamme T (2010) Iodinated blood pool contrast media for preclinical X-ray imaging applications – a review. Biomaterials 31(24):6249–6268CrossRef
109.
Zurück zum Zitat Liu H, Wang H, Xu Y, Shen M, Zhao J, Zhang G, Shi X (2014) Synthesis of PEGylated low generation dendrimer-entrapped gold nanoparticles for CT imaging applications. Nanoscale 6(9):4521–4526CrossRef Liu H, Wang H, Xu Y, Shen M, Zhao J, Zhang G, Shi X (2014) Synthesis of PEGylated low generation dendrimer-entrapped gold nanoparticles for CT imaging applications. Nanoscale 6(9):4521–4526CrossRef
110.
Zurück zum Zitat Wang H, Zheng L, Guo R, Peng C, Shen M, Shi X, Zhang G (2012) Dendrimer-entrapped gold nanoparticles as potential CT contrast agents for blood pool imaging. Nanoscale Res Lett 7(1):190CrossRef Wang H, Zheng L, Guo R, Peng C, Shen M, Shi X, Zhang G (2012) Dendrimer-entrapped gold nanoparticles as potential CT contrast agents for blood pool imaging. Nanoscale Res Lett 7(1):190CrossRef
111.
Zurück zum Zitat Peng C, Qin J, Zhou B, Chen Q, Shen M, Zhu M, Lu X, Shi X (2013) Targeted tumor CT imaging using folic acid-modified PEGylated dendrimer-entrapped gold nanoparticles. Polym Chem 4(16):4412–4424CrossRef Peng C, Qin J, Zhou B, Chen Q, Shen M, Zhu M, Lu X, Shi X (2013) Targeted tumor CT imaging using folic acid-modified PEGylated dendrimer-entrapped gold nanoparticles. Polym Chem 4(16):4412–4424CrossRef
112.
Zurück zum Zitat Criscione JM, Dobrucki LW, Zhuang ZW, Papademetris X, Simons M, Sinusas AJ, Fahmy TM (2011) Development and application of a multimodal contrast agent for SPECT/CT hybrid imaging. Bioconjug Chem 22(9):1784–1792CrossRef Criscione JM, Dobrucki LW, Zhuang ZW, Papademetris X, Simons M, Sinusas AJ, Fahmy TM (2011) Development and application of a multimodal contrast agent for SPECT/CT hybrid imaging. Bioconjug Chem 22(9):1784–1792CrossRef
113.
Zurück zum Zitat Xu C, Tung GA, Sun S (2008) Size and concentration effect of gold nanoparticles on X-ray attenuation as measured on computed tomography. Chem Mater 20(13):4167–4169CrossRef Xu C, Tung GA, Sun S (2008) Size and concentration effect of gold nanoparticles on X-ray attenuation as measured on computed tomography. Chem Mater 20(13):4167–4169CrossRef
114.
Zurück zum Zitat Shi X, Lee I, Baker JR (2008) Acetylation of dendrimer-entrapped gold and silver nanoparticles. J Mater Chem 18(5):586–593CrossRef Shi X, Lee I, Baker JR (2008) Acetylation of dendrimer-entrapped gold and silver nanoparticles. J Mater Chem 18(5):586–593CrossRef
115.
Zurück zum Zitat Guo R, Wang H, Peng C, Shen M, Pan M, Cao X, Zhang G, Shi X (2010) X-ray attenuation property of dendrimer-entrapped gold nanoparticles. J Phys Chem C 114(1):50–56CrossRef Guo R, Wang H, Peng C, Shen M, Pan M, Cao X, Zhang G, Shi X (2010) X-ray attenuation property of dendrimer-entrapped gold nanoparticles. J Phys Chem C 114(1):50–56CrossRef
116.
Zurück zum Zitat Jordan LC, McKinstry RC, Kraut MA, Ball WS, Vendt BA, Casella JF, DeBaun MR, Strouse JJ (2010) Incidental findings on brain magnetic resonance imaging of children with sickle cell disease. Pediatrics 126(1):53CrossRef Jordan LC, McKinstry RC, Kraut MA, Ball WS, Vendt BA, Casella JF, DeBaun MR, Strouse JJ (2010) Incidental findings on brain magnetic resonance imaging of children with sickle cell disease. Pediatrics 126(1):53CrossRef
117.
Zurück zum Zitat Beets-Tan RGH, Beets GL (2004) Rectal cancer: review with emphasis on MR imaging. Radiology 232(2):335–346CrossRef Beets-Tan RGH, Beets GL (2004) Rectal cancer: review with emphasis on MR imaging. Radiology 232(2):335–346CrossRef
118.
Zurück zum Zitat Raymond KN, Pierre VC (2005) Next generation, high relaxivity gadolinium MRI agents. Bioconjug Chem 16(1):3–8CrossRef Raymond KN, Pierre VC (2005) Next generation, high relaxivity gadolinium MRI agents. Bioconjug Chem 16(1):3–8CrossRef
119.
Zurück zum Zitat Yang C-T, Chuang K-H (2012) Gd(iii) chelates for MRI contrast agents: from high relaxivity to “smart”, from blood pool to blood-brain barrier permeable. Med Chem Commun 3(5):552–565CrossRef Yang C-T, Chuang K-H (2012) Gd(iii) chelates for MRI contrast agents: from high relaxivity to “smart”, from blood pool to blood-brain barrier permeable. Med Chem Commun 3(5):552–565CrossRef
120.
Zurück zum Zitat Cheng C-Y, Ou K-L, Huang W-T, Chen J-K, Chang J-Y, Yang C-H (2013) Gadolinium-based CuInS2/ZnS nanoprobe for dual-modality magnetic resonance/optical imaging. ACS Appl Mater Interfaces 5(10):4389–4400CrossRef Cheng C-Y, Ou K-L, Huang W-T, Chen J-K, Chang J-Y, Yang C-H (2013) Gadolinium-based CuInS2/ZnS nanoprobe for dual-modality magnetic resonance/optical imaging. ACS Appl Mater Interfaces 5(10):4389–4400CrossRef
121.
Zurück zum Zitat Langereis S, de Lussanet QG, van Genderen MHP, Meijer EW, Beets-Tan RGH, Griffioen AW, van Engelshoven JMA, Backes WH (2006) Evaluation of Gd(III)DTPA-terminated poly(propylene imine) dendrimers as contrast agents for MR imaging. NMR Biomed 19(1):133–141CrossRef Langereis S, de Lussanet QG, van Genderen MHP, Meijer EW, Beets-Tan RGH, Griffioen AW, van Engelshoven JMA, Backes WH (2006) Evaluation of Gd(III)DTPA-terminated poly(propylene imine) dendrimers as contrast agents for MR imaging. NMR Biomed 19(1):133–141CrossRef
122.
Zurück zum Zitat Cheng Z, Thorek DLJ, Tsourkas A (2010) Gadolinium-conjugated dendrimer nanoclusters as a tumor-targeted T1 magnetic resonance imaging contrast agent. Angew Chem Int Ed Engl 49(2):346–350CrossRef Cheng Z, Thorek DLJ, Tsourkas A (2010) Gadolinium-conjugated dendrimer nanoclusters as a tumor-targeted T1 magnetic resonance imaging contrast agent. Angew Chem Int Ed Engl 49(2):346–350CrossRef
123.
Zurück zum Zitat Rahmania H, Mutalib A, Ramli M, Levita J (2015) Synthesis and stability test of radiogadolinium(III)-DOTA-PAMAM G3.0-trastuzumab as SPECT-MRI molecular imaging agent for diagnosis of HER-2 positive breast cancer. J Radiat Res Appl Sci 8(1):91–99CrossRef Rahmania H, Mutalib A, Ramli M, Levita J (2015) Synthesis and stability test of radiogadolinium(III)-DOTA-PAMAM G3.0-trastuzumab as SPECT-MRI molecular imaging agent for diagnosis of HER-2 positive breast cancer. J Radiat Res Appl Sci 8(1):91–99CrossRef
124.
Zurück zum Zitat Lee WI, Bae Y, Bard AJ (2004) Strong blue photoluminescence and ECL from OH-terminated PAMAM dendrimers in the absence of gold nanoparticles. J Am Chem Soc 126(27):8358–8359CrossRef Lee WI, Bae Y, Bard AJ (2004) Strong blue photoluminescence and ECL from OH-terminated PAMAM dendrimers in the absence of gold nanoparticles. J Am Chem Soc 126(27):8358–8359CrossRef
125.
Zurück zum Zitat Wang D, Imae T (2004) Fluorescence emission from dendrimers and its pH dependence. J Am Chem Soc 126(41):13204–13205CrossRef Wang D, Imae T (2004) Fluorescence emission from dendrimers and its pH dependence. J Am Chem Soc 126(41):13204–13205CrossRef
126.
Zurück zum Zitat Tsuchimochi M, Hayama K, Toyama M, Sasagawa I, Tsubokawa N (2013) Dual-modality imaging with 99mTc and fluorescent indocyanine green using surface-modified silica nanoparticles for biopsy of the sentinel lymph node: an animal study. EJNMMI Res 3(1):33CrossRef Tsuchimochi M, Hayama K, Toyama M, Sasagawa I, Tsubokawa N (2013) Dual-modality imaging with 99mTc and fluorescent indocyanine green using surface-modified silica nanoparticles for biopsy of the sentinel lymph node: an animal study. EJNMMI Res 3(1):33CrossRef
127.
Zurück zum Zitat Xie J, Lee S, Chen X (2010) Nanoparticle-based theranostic agents. Adv Drug Deliv Rev 62(11):1064–1079CrossRef Xie J, Lee S, Chen X (2010) Nanoparticle-based theranostic agents. Adv Drug Deliv Rev 62(11):1064–1079CrossRef
128.
Zurück zum Zitat Ma Y, Mou Q, Wang D, Zhu X, Yan D (2016) Dendritic polymers for theranostics. Theranostics 6(7):930–947CrossRef Ma Y, Mou Q, Wang D, Zhu X, Yan D (2016) Dendritic polymers for theranostics. Theranostics 6(7):930–947CrossRef
129.
Zurück zum Zitat Zhu J, Zhao L, Cheng Y, Xiong Z, Tang Y, Shen M, Zhao J, Shi X (2015) Radionuclide 131I-labeled multifunctional dendrimers for targeted SPECT imaging and radiotherapy of tumors. Nanoscale 7(43):18169–18178CrossRef Zhu J, Zhao L, Cheng Y, Xiong Z, Tang Y, Shen M, Zhao J, Shi X (2015) Radionuclide 131I-labeled multifunctional dendrimers for targeted SPECT imaging and radiotherapy of tumors. Nanoscale 7(43):18169–18178CrossRef
130.
Zurück zum Zitat Cheng Y, Zhu J, Zhao L, Xiong Z, Tang Y, Liu C, Guo L, Qiao W, Shi X, Zhao J (2016) 131I-labeled multifunctional dendrimers modified with BmK CT for targeted SPECT imaging and radiotherapy of gliomas. Nanomedicine 11(10):1253–1266CrossRef Cheng Y, Zhu J, Zhao L, Xiong Z, Tang Y, Liu C, Guo L, Qiao W, Shi X, Zhao J (2016) 131I-labeled multifunctional dendrimers modified with BmK CT for targeted SPECT imaging and radiotherapy of gliomas. Nanomedicine 11(10):1253–1266CrossRef
131.
Zurück zum Zitat Vugmeyster Y, DeFranco D, Szklut P, Wang Q, Xu X (2010) Biodistribution of [125I]-labeled therapeutic proteins: application in protein drug development beyond oncology. J Pharm Sci 99(2):1028–1045CrossRef Vugmeyster Y, DeFranco D, Szklut P, Wang Q, Xu X (2010) Biodistribution of [125I]-labeled therapeutic proteins: application in protein drug development beyond oncology. J Pharm Sci 99(2):1028–1045CrossRef
132.
Zurück zum Zitat Shao X, Zhang H, Rajian JR, Chamberland DL, Sherman PS, Quesada CA, Koch AE, Kotov NA, Wang X (2011) 125I-labeled gold nanorods for targeted imaging of inflammation. ACS Nano 5(11):8967–8973CrossRef Shao X, Zhang H, Rajian JR, Chamberland DL, Sherman PS, Quesada CA, Koch AE, Kotov NA, Wang X (2011) 125I-labeled gold nanorods for targeted imaging of inflammation. ACS Nano 5(11):8967–8973CrossRef
133.
Zurück zum Zitat Merkel OM, Mintzer MA, Sitterberg J, Bakowsky U, Simanek EE, Kissel T (2009) Triazine dendrimers as nonviral gene delivery systems: effects of molecular structure on biological activity. Bioconjug Chem 20(9):1799–1806CrossRef Merkel OM, Mintzer MA, Sitterberg J, Bakowsky U, Simanek EE, Kissel T (2009) Triazine dendrimers as nonviral gene delivery systems: effects of molecular structure on biological activity. Bioconjug Chem 20(9):1799–1806CrossRef
134.
Zurück zum Zitat Mintzer MA, Merkel OM, Kissel T, Simanek EE (2009) Polycationic triazine-based dendrimers: effect of peripheral groups on transfection efficiency. New J Chem 33(9):1918–1925CrossRef Mintzer MA, Merkel OM, Kissel T, Simanek EE (2009) Polycationic triazine-based dendrimers: effect of peripheral groups on transfection efficiency. New J Chem 33(9):1918–1925CrossRef
135.
Zurück zum Zitat Merkel OM, Zheng M, Mintzer MA, Pavan GM, Librizzi D, Maly M, Höffken H, Danani A, Simanek EE, Kissel T (2011) Molecular modeling and in vivo imaging can identify successful flexible triazine dendrimer-based siRNA delivery systems. J Control Release 153(1):23–33CrossRef Merkel OM, Zheng M, Mintzer MA, Pavan GM, Librizzi D, Maly M, Höffken H, Danani A, Simanek EE, Kissel T (2011) Molecular modeling and in vivo imaging can identify successful flexible triazine dendrimer-based siRNA delivery systems. J Control Release 153(1):23–33CrossRef
136.
Zurück zum Zitat Lee C, Lo S-T, Lim J, da Costa VCP, Ramezani S, Öz OK, Pavan GM, Annunziata O, Sun X, Simanek EE (2013) Design, synthesis and biological assessment of a triazine dendrimer with approximately 16 paclitaxel groups and 8 PEG groups. Mol Pharm 10(12):4452–4461CrossRef Lee C, Lo S-T, Lim J, da Costa VCP, Ramezani S, Öz OK, Pavan GM, Annunziata O, Sun X, Simanek EE (2013) Design, synthesis and biological assessment of a triazine dendrimer with approximately 16 paclitaxel groups and 8 PEG groups. Mol Pharm 10(12):4452–4461CrossRef
137.
Zurück zum Zitat Xiao W, Luo J, Jain T, Riggs JW, Tseng HP, Henderson PT, Cherry SR, Rowland D, Lam KS (2012) Biodistribution and pharmacokinetics of a telodendrimer micellar paclitaxel nanoformulation in a mouse xenograft model of ovarian cancer. Int J Nanomedicine 7(9):1587–1597CrossRef Xiao W, Luo J, Jain T, Riggs JW, Tseng HP, Henderson PT, Cherry SR, Rowland D, Lam KS (2012) Biodistribution and pharmacokinetics of a telodendrimer micellar paclitaxel nanoformulation in a mouse xenograft model of ovarian cancer. Int J Nanomedicine 7(9):1587–1597CrossRef
Metadaten
Titel
Dendrimer-Based Nanoplatforms for SPECT Imaging Applications
verfasst von
Lingzhou Zhao
Xiangyang Shi
Jinhua Zhao
Copyright-Jahr
2018
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-56333-5_12

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.