[ABPS1]
A.-M. Aubert, P. Baum, R.J. Plymen, M. Solleveld, Geometric structure and the local Langlands conjecture (2013). arXiv:1211.0180
[ABPS2]
A.-M. Aubert, P.F. Baum, R.J. Plymen, M. Solleveld, The local Langlands correspondence for inner forms of SL
n . Res. Math. Sci. (2013, To appear). Preprint
[Bad]
A.I. Badulescu, Correspondance de Jacquet-Langlands pour les corps locaux de caractéristique non nulle. Ann. Sci. Éc. Norm. Sup. (4)
35, 695–747 (2002)
[BaBr]
A.I. Badulescu, Un théorème de finitude (with an appendix by P. Broussous). Compos. Math.
132, 177–190 (2002)
[Bro]
P. Broussous, Minimal strata for GL
m (
D). J. Reine Angew. Math.
514, 199–236 (1999)
MathSciNetMATH
[BrLe]
P. Broussous, B. Lemaire, Building of GL(
m,
D) and centralizers. Transform. Groups
7 (1), 15–50 (2002)
MathSciNetCrossRefMATH
[BuFr1]
C.J. Bushnell, A. Frölich,
Gauss Sums and p-adic Division Algebras. Lecture Notes in Mathematics, vol. 987 (Springer, Berlin, 1983)
[BuFr2]
C.J. Bushnell, A. Frölich, Non-abelian congruence Gauss sums and
p-adic simple algebras. Proc. Lond. Math. Soc. (3)
50, 207–264 (1985)
[BuHe1]
C.J. Bushnell, G. Henniart, The essentially tame local Langlands correspondence, I. J. Am. Math. Soc.
18.3, 685–710 (2005)
MathSciNetCrossRefMATH
[BuHe2]
C.J. Bushnell, G. Henniart,
The Local Langlands Conjecture for GL(2). Grundlehren der mathematischen Wissenschaften, vol. 335 (Springer, Berlin, 2006)
[BuKu]
C.J. Bushnell, P.C. Kutzko, The admissible dual of SL(
N) I. Ann. Scient. Éc. Norm. Sup. (4)
26, 261–280 (1993)
[ChKa]
T.H. Chen, M. Kamgarpour, Preservation of depth in local geometric Langlands correspondence (2014). arXiv: 1404.0598
[DBRe]
S. DeBacker, M. Reeder, Depth zero supercuspidal L-packets and their stability. Ann. Math.
169 (3), 795–901 (2009)
MathSciNetCrossRefMATH
[DKV]
P. Deligne, D. Kazhdan, M.-F. Vigneras, Représentations des algèbres centrales simples
p-adiques, in
Représentations des Groupes réductifs sur un Corps Local (Travaux en cours, Hermann, 1984), pp. 33–117
[Gan]
R. Ganapathy, The local Langlands correspondence for
GSp
4 over local function fields. Am. J. Math.
137 (6), 1441–1534 (2015)
MathSciNetCrossRefMATH
[GoJa]
R. Godement, H. Jacquet,
Zeta Functions of Simple Algebras. Lecture Notes in Mathematics, vol. 260 (Springer, New York, 1972)
[GSZ]
M. Grabitz, A.J. Silberger, W. Zink, Level zero types and Hecke algebras for local central simple algebras. J. Number Theory
91, 92–125 (2001)
MathSciNetCrossRefMATH
[GrRe]
B.H. Gross, M. Reeder, “Arithmetic invariants of discrete Langlands parameters”, Duke Math. J.
154 (2010), 431–508.
MathSciNetCrossRefMATH
[HaTa]
M. Harris, R. Taylor,
The Geometry and Cohomology of Some Simple Shimura Varieties. Annals of Mathematics Studies, vol. 151 (Princeton University Press, Princeton NJ, 2001)
[Hen]
G. Henniart, On the local Langlands conjecture for GL(
n): the cyclic case. Ann. Math.
123, 143–203 (1986)
MathSciNetCrossRefMATH
[Hen2]
G. Henniart, Une preuve simple de conjectures de Langlands pour GL(
n) sur un corps
p-adique. Invent. Math.
139 (2000), 439–455.
MathSciNetCrossRef
[HiSa]
K. Hiraga, H. Saito, On L-packets for inner forms of SL
n . Mem. Am. Math. Soc.
215 (1013) (2012)
[Jac]
H. Jacquet, Principal L-functions of the linear group. Proc. Symp. Pure Math.
33 (2), 63–86 (1979)
MathSciNetCrossRefMATH
[JaLa]
H. Jacquet, R. Langlands,
Automorphic Forms on GL(2). Lecture Notes in Mathematics, vol. 114 (Springer, New York, 1970)
[Kot]
R.E. Kottwitz, Stable trace formula: cuspidal tempered terms. Duke Math. J.
51 (3), 611–650 (1984)
MathSciNetCrossRefMATH
[LaRa]
J. Lansky, A. Raghuram, On the correspondence of representations between GL(
n) and division algebras. Proc. Am. Math. Soc.
131 (5), 1641–1648 (2002)
MathSciNetCrossRefMATH
[LRS]
G. Laumon, M. Rapoport, U. Stuhler,
\(\mathcal{D}\)-elliptic sheaves and the Langlands correspondence. Invent. Math.
113, 217–238 (1993)
[Lus1]
G. Lusztig, Classification of unipotent representations of simple
p-adic groups. Int. Math. Res. Not.
11, 517–589 (1995)
MathSciNetCrossRefMATH
[Lus2]
G. Lusztig, Classification of unipotent representations of simple
p-adic groups II. Represent. Theory
6, 243–289 (2002)
MathSciNetCrossRefMATH
[Mœ]
C. Mœglin, Stabilité en niveau 0, pour les groupes orthogonaux impairs
p-adiques. Doc. Math.
9, 527–564 (2004)
MathSciNet
[Mor]
L. Morris, Tamely ramified intertwining algebras. Invent. Math.
114 (1), 1–54 (1993)
MathSciNetCrossRefMATH
[MoPr1]
A. Moy, G. Prasad, Unrefined minimal
K-types for p-adic groups. Invent. Math.
116, 393–408 (1994)
MathSciNetCrossRefMATH
[MoPr2]
A. Moy, G. Prasad, Jacquet functors and unrefined minimal K-types. Comment. Math. Helv.
71, 98–121 (1996)
MathSciNetCrossRefMATH
[Ree]
M. Reeder, Supercuspidal L-packets of positive depth and twisted Coxeter elements. J. Reine Angew. Math.
620, 1–33 (2008)
MathSciNetCrossRefMATH
[ReYu]
M. Reeder, J.-K. Yu, Epipelagic representations and invariant theory. J. Am. Math. Soc.
27, 437–477 (2014)
MathSciNetCrossRefMATH
[SéSt1]
V. Sécherre, S. Stevens, Représentations lisses de GL
m (
D) IV: représentations supercuspidales. J. Inst. Math. Jussieu
7 (3), 527–574 (2008)
MathSciNetCrossRefMATH
[Ser]
J.-P. Serre,
Corps Locaux (Hermann, Paris, 1962)
MATH
[Tad]
M. Tadić, Induced representations of GL(
n,
A) for
p-adic division algebras
A. J. Reine Angew. Math.
405, 48–77 (1990)
[Vog]
D. Vogan, The local Langlands conjecture, in
Representation Theory of Groups and Algebras. Contemporary Mathematics, vol. 145 (American Mathematical Society, Providence, RI, 1993), pp. 305–379
[Yu1]
J.-K. Yu, Bruhat-Tits theory and buildings, in
Ottawa Lectures on Admissible Representations of Reductive p-adic Groups. Fields Institute Monographs (American Mathematical Society, Providence, RI, 2009), pp. 53–77
[Yu2]
J.-K. Yu, On the local Langlands correspondence for tori, in
Ottawa Lectures on Admissible Representations of Reductive p-adic Groups. Fields Institute Monographs (American Mathematical Society, Providence, RI, 2009), pp. 177–183
[Zel]
A.V. Zelevinsky, Induced representations of reductive
p-adic groups II. On irreducible representations of GL(
n). Ann. Sci. École Norm. Sup. (4)
13 (2), 165–210 (1980)