2014 | OriginalPaper | Buchkapitel
Tipp
Weitere Kapitel dieses Buchs durch Wischen aufrufen
Erschienen in:
Trends in Contemporary Mathematics
Ohm’s law states that the current density j at a given location in a plasma is proportional to the electric field E at that location. We propose here a rigorous derivation of this law (and of some extensions of it) starting from a microscopic model consisting of two species of charged particles interacting both via the self-consistent electromagnetic field, and via some collisional processes.
Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten
Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:
Anzeige
1.
R. Alexandre, C. Villani, On the Boltzmann equation for long-range interactions. Commun. Pure Appl. Math.
55(1), 30–70 (2002)
CrossRefMATHMathSciNet
2.
R. Alexandre, L. Desvillettes, C. Villani, B. Wennberg, Entropy dissipation and long-range interactions. Arch. Ration. Mech. Anal.
152(4), 327–355 (2000)
CrossRefMATHMathSciNet
3.
D. Arsénio, From Boltzmann’s equation to the incompressible Navier-Stokes-Fourier system with long-range interactions. Arch. Ration. Mech. Anal.
206(2), 367–488 (2012)
CrossRefMATHMathSciNet
4.
D. Arsénio, L. Saint-Raymond, Compactness in kinetic transport equations and hypoellipticity. J. Funct. Anal.
261, 3044–3098 (2011)
CrossRefMATHMathSciNet
5.
6.
D. Arsénio, L. Saint-Raymond, From the Vlasov-Maxwell-Boltzmann system to incompressible viscous electro-magneto-hydrodynamics (preprint in 2014)
7.
C. Bardos, F. Golse, C.D. Levermore, Fluid dynamic limits of kinetic equations II: convergence proofs for the Boltzmann equation. Commun. Pure Appl. Math.
46, 667–753 (1993)
CrossRefMATHMathSciNet
8.
R.J. DiPerna, P.-L. Lions, Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math.
98, 511–547 (1989)
CrossRefMATHMathSciNet
9.
R.J. DiPerna, P.-L. Lions, On the Cauchy problem for the Boltzmann equation: global existence and weak stability results. Ann. Math.
130, 321–366 (1990)
CrossRefMathSciNet
10.
R.J. DiPerna, P.-L. Lions, Global weak solutions of Vlasov-Maxwell systems. Commun. Pure Appl. Math.
42, 729–757 (1989)
CrossRefMATHMathSciNet
11.
R.J. DiPerna, P.-L. Lions, Y. Meyer,
L
p regularity of velocity averages. Ann. Inst. H. Poincar Anal. Non Linéaire
8, 271–287 (1991)
MATHMathSciNet
12.
F. Golse, P.-L. Lions, B. Perthame, R. Sentis, Regularity of the moments of the solution of a transport equation. J. Funct. Anal.
76, 110–125 (1988)
CrossRefMATHMathSciNet
13.
F. Golse, D. Levermore, L. Saint-Raymond, La méthode de l’entropie relative pour les limites hydrodynamiques de modèles cinétiques. Séminaire Equations aux dérivées partielles (Polytechnique) (1999–2000)
14.
F. Golse, L. Saint-Raymond, The Navier-Stokes limit of the Boltzmann equation for bounded collision kernels. Invent. Math.
155(1), 81–161 (2004)
CrossRefMATHMathSciNet
15.
F. Golse, L. Saint-Raymond, The Navier-Stokes limit of the Boltzmann equation for hard potentials. J. Math. Pure Appl.
91(5), 508–552 (2009)
CrossRefMATHMathSciNet
16.
F. Golse, L. Saint-Raymond, Velocity averaging in
L
1 for the transport equation. C. R. Acad. Sci.
334, 557–562 (2002)
CrossRefMATHMathSciNet
17.
S. Ibrahim, S. Keraani, Global small solutions for the Navier-Stokes-Maxwell system. SIAM J. Math. Anal.
43(5), 2278–2295 (2011)
CrossRefMathSciNet
18.
P.-L. Lions, N. Masmoudi, From the Boltzmann equations to the equations of incompressible fluid mechanics. I, II. Arch. Ration. Mech. Anal.
158, 173–193, 195–211 (2001)
19.
L. Saint-Raymond, Convergence of solutions to the Boltzmann equation in the incompressible Euler limit. Arch. Ration. Mech. Anal.
166, 47–80 (2003)
CrossRefMATHMathSciNet
20.
L. Saint-Raymond, Hydrodynamic limits: some improvements of the relative entropy method. Ann. Inst. H. Poincaré
26, 705–744 (2009)
CrossRefMATHMathSciNet
21.
L. Saint-Raymond,
Hydrodynamic Limits of the Boltzmann Equation. Lecture Notes in Mathematics, vol. 1971 (Springer, Berlin, 2009)
22.
H.T. Yau, Relative entropy and hydrodynamics of Ginzburg-Landau models. Lett. Math. Phys.
22, 63–80 (1991)
CrossRefMATHMathSciNet
- Titel
- Deriving Ohm’s Law from the Vlasov-Maxwell-Boltzmann System
- DOI
- https://doi.org/10.1007/978-3-319-05254-0_18
- Autor:
-
Laure Saint-Raymond
- Sequenznummer
- 18
- Kapitelnummer
- Chapter 18