Skip to main content
Erschienen in: Journal of Computational Electronics 1/2018

22.09.2017

Design and analysis of a gate-all-around CNTFET-based SRAM cell

verfasst von: G. Saiphani Kumar, Amandeep Singh, Balwinder Raj

Erschienen in: Journal of Computational Electronics | Ausgabe 1/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper proposes a highly stable and low power 6-T static random access memory (SRAM) cell design using a gate-all-around carbon nanotube field effect transistor (GAA-CNTFET). The 6-T SRAM cell is designed and analyzed in HSPICE for different performance metrics viz. SNM, read SNM, write SNM, delay, and leakage power for both the top gate CNTFET and the GAA-CNTFET. The effect of variation of the power supply voltage on the leakage current is also presented, and it was found that the GAA-CNTFET accounts for low power dissipation at higher supply voltage. The 6-T SRAM cell is analyzed for different flat band conditions of the p-type CNTFET taking flatband of the n-type as constant, which is called a dual flat band voltage technique. Through simulations, it is found that by increasing the flatband voltage of a p-type CNTFET, the SRAM gives better performance. The dual flatband variation technique is compared with dual chirality technique, and it is observed that both techniques give the same results.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Iwai, H.: Roadmap for 22 nm and beyond. Microelectron. Eng. 86(7), 1520–1528 (2009)CrossRef Iwai, H.: Roadmap for 22 nm and beyond. Microelectron. Eng. 86(7), 1520–1528 (2009)CrossRef
2.
Zurück zum Zitat Chen, T.-C.: Overcoming research challenges for CMOS scaling: industry directions. In: Proceedings of the International Conference on Solid-State and IC Technology, pp. 4–7 (2006) Chen, T.-C.: Overcoming research challenges for CMOS scaling: industry directions. In: Proceedings of the International Conference on Solid-State and IC Technology, pp. 4–7 (2006)
3.
Zurück zum Zitat Gopalakrishnan, K., Griffin, P.B., Plummer, J.D.: I-MOS: a novel semiconductor device with a subthreshold slope lower than kT/q. In: Proceedings of the Electron Devices Meeting, pp. 289–292 (2002) Gopalakrishnan, K., Griffin, P.B., Plummer, J.D.: I-MOS: a novel semiconductor device with a subthreshold slope lower than kT/q. In: Proceedings of the Electron Devices Meeting, pp. 289–292 (2002)
4.
Zurück zum Zitat Quitoriano, J.N., Kamins, T.I.: Integratable nanowire transistors. Nano Lett. 8(12), 4410–4414 (2008)CrossRef Quitoriano, J.N., Kamins, T.I.: Integratable nanowire transistors. Nano Lett. 8(12), 4410–4414 (2008)CrossRef
5.
Zurück zum Zitat Datta, S., Liu, H., Narayanan, V.: Tunnel FET technology: a reliability perspective. Microelectron. Reliab. 54(5), 861–874 (2014)CrossRef Datta, S., Liu, H., Narayanan, V.: Tunnel FET technology: a reliability perspective. Microelectron. Reliab. 54(5), 861–874 (2014)CrossRef
6.
Zurück zum Zitat Kastner, M.A.: The single-electron transistor. Rev. Mod. Phys. 64(3), 849 (1992)CrossRef Kastner, M.A.: The single-electron transistor. Rev. Mod. Phys. 64(3), 849 (1992)CrossRef
7.
Zurück zum Zitat Fiori, G., Iannaccone, G.: Simulation of graphene nanoribbon field-effect transistors. IEEE Electron Device Lett. 28(8), 760–762 (2007)CrossRef Fiori, G., Iannaccone, G.: Simulation of graphene nanoribbon field-effect transistors. IEEE Electron Device Lett. 28(8), 760–762 (2007)CrossRef
8.
Zurück zum Zitat Fiori, G., Bonaccorso, F., Iannaccone, G., Palacios, T., Neumaier, D., Seabaugh, A., Banerjee, S.K., Colombo, L.: Electronics based on two-dimensional materials. Nat. Nanotechnol. 9(10), 768–779 (2014)CrossRef Fiori, G., Bonaccorso, F., Iannaccone, G., Palacios, T., Neumaier, D., Seabaugh, A., Banerjee, S.K., Colombo, L.: Electronics based on two-dimensional materials. Nat. Nanotechnol. 9(10), 768–779 (2014)CrossRef
9.
Zurück zum Zitat Dürkop, T., Getty, S.A., Cobas, E., Fuhrer, M.S.: Extraordinary mobility in semiconducting carbon nanotubes. Nano Lett. 4(1), 35–39 (2004)CrossRef Dürkop, T., Getty, S.A., Cobas, E., Fuhrer, M.S.: Extraordinary mobility in semiconducting carbon nanotubes. Nano Lett. 4(1), 35–39 (2004)CrossRef
10.
Zurück zum Zitat McEuen, P.L., Fuhrer, M.S., Park, H.: Single-walled carbon nanotube electronics. IEEE Trans. Nanotechnol. 1(1), 78–85 (2002)CrossRef McEuen, P.L., Fuhrer, M.S., Park, H.: Single-walled carbon nanotube electronics. IEEE Trans. Nanotechnol. 1(1), 78–85 (2002)CrossRef
11.
Zurück zum Zitat Dresselhaus, M.S., Dresselhaus, G., Saito, R.: Physics of carbon nanotubes. Carbon 33(7), 883–891 (1995)CrossRef Dresselhaus, M.S., Dresselhaus, G., Saito, R.: Physics of carbon nanotubes. Carbon 33(7), 883–891 (1995)CrossRef
12.
Zurück zum Zitat Javey, A., Kim, H., Brink, M., Wang, Q., Ural, A., Guo, J., McIntyre, P., McEuen, P., Lundstrom, M., Dai, H.: High K dielectrics for advanced carbon nanotube transistors and logic. Nat. Mater. 1(4), 241–246 (2002)CrossRef Javey, A., Kim, H., Brink, M., Wang, Q., Ural, A., Guo, J., McIntyre, P., McEuen, P., Lundstrom, M., Dai, H.: High K dielectrics for advanced carbon nanotube transistors and logic. Nat. Mater. 1(4), 241–246 (2002)CrossRef
13.
Zurück zum Zitat Shahi, A.A.M., Zarkesh-Ha, P., Elahi, M.: Comparison of variations in MOSFET versus CNFET in gigascale integrated systems. In: Proceedings of the Thirteenth International Symposium on Quality Electronic Design (ISQED), pp. 378–383 (2012) Shahi, A.A.M., Zarkesh-Ha, P., Elahi, M.: Comparison of variations in MOSFET versus CNFET in gigascale integrated systems. In: Proceedings of the Thirteenth International Symposium on Quality Electronic Design (ISQED), pp. 378–383 (2012)
14.
Zurück zum Zitat Martel, R., Wong, H.-S.P., Chan, K.K., Avouris, P.: Carbon nanotube field effect transistors for logic applications. In: Proceedings of the Electron Devices Meeting, p. 159 (2001) Martel, R., Wong, H.-S.P., Chan, K.K., Avouris, P.: Carbon nanotube field effect transistors for logic applications. In: Proceedings of the Electron Devices Meeting, p. 159 (2001)
15.
Zurück zum Zitat Appenzeller, J.: Comparing carbon nanotube transistors-the ideal choice: a novel tunneling device design. IEEE Trans. Electron Devices 52(12), 2568–2576 (2005)CrossRef Appenzeller, J.: Comparing carbon nanotube transistors-the ideal choice: a novel tunneling device design. IEEE Trans. Electron Devices 52(12), 2568–2576 (2005)CrossRef
16.
Zurück zum Zitat Wind, S.J., Appenzeller, J., Martel, R., Derycke, V.P.P.A., Avouris, P.: Fabrication and electrical characterization of top gate single-wall carbon nanotube field-effect transistors. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 20(6), 2798–2801 (2002)CrossRef Wind, S.J., Appenzeller, J., Martel, R., Derycke, V.P.P.A., Avouris, P.: Fabrication and electrical characterization of top gate single-wall carbon nanotube field-effect transistors. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 20(6), 2798–2801 (2002)CrossRef
17.
Zurück zum Zitat Wind, S.J., Appenzeller, J., Martel, R., Derycke, V.P.P.A., Avouris, P.: Vertical scaling of carbon nanotube field-effect transistors using top gate electrodes. Appl. Phys. Lett. 80(20), 3817–3819 (2002)CrossRef Wind, S.J., Appenzeller, J., Martel, R., Derycke, V.P.P.A., Avouris, P.: Vertical scaling of carbon nanotube field-effect transistors using top gate electrodes. Appl. Phys. Lett. 80(20), 3817–3819 (2002)CrossRef
18.
Zurück zum Zitat Franklin, A.D., Luisier, M., Han, S.-J., Tulevski, G., Breslin, C.M., Gignac, L., Lundstrom, M.S., Haensch, W.: Sub-10 nm carbon nanotube transistor. Nano Lett. 12(2), 758–762 (2012)CrossRef Franklin, A.D., Luisier, M., Han, S.-J., Tulevski, G., Breslin, C.M., Gignac, L., Lundstrom, M.S., Haensch, W.: Sub-10 nm carbon nanotube transistor. Nano Lett. 12(2), 758–762 (2012)CrossRef
19.
Zurück zum Zitat Franklin, A.D., Lin, A., Wong, H.-S.P., Chen, Z.: Current scaling in aligned carbon nanotube array transistors with local bottom gating. IEEE Electron Device Lett. 31(7), 644–646 (2010)CrossRef Franklin, A.D., Lin, A., Wong, H.-S.P., Chen, Z.: Current scaling in aligned carbon nanotube array transistors with local bottom gating. IEEE Electron Device Lett. 31(7), 644–646 (2010)CrossRef
20.
Zurück zum Zitat Pourfath, M., Ungersboeck, E., Gehring, A., Kosina, H., Selberherr, S., Park, W.-J., Cheong, B.-H.: Numerical analysis of coaxial double gate Schottky barrier carbon nanotube field effect transistors. J. Comput. Electron. 4(1), 75–78 (2005)CrossRef Pourfath, M., Ungersboeck, E., Gehring, A., Kosina, H., Selberherr, S., Park, W.-J., Cheong, B.-H.: Numerical analysis of coaxial double gate Schottky barrier carbon nanotube field effect transistors. J. Comput. Electron. 4(1), 75–78 (2005)CrossRef
21.
Zurück zum Zitat Zukoski, A., Yang, X., Mohanram, K.: Universal logic modules based on double-gate carbon nanotube transistors. In: Proceedings of the 48th Design Automation Conference, pp. 884–889. ACM (2011) Zukoski, A., Yang, X., Mohanram, K.: Universal logic modules based on double-gate carbon nanotube transistors. In: Proceedings of the 48th Design Automation Conference, pp. 884–889. ACM (2011)
22.
Zurück zum Zitat Hien, D.S., Luong, N.T., Tuan, T.T.A., Nga, D.V.: 3D Simulation of coaxial carbon nanotube field effect transistor. J. Phys. 187(1), 012061 (2009) Hien, D.S., Luong, N.T., Tuan, T.T.A., Nga, D.V.: 3D Simulation of coaxial carbon nanotube field effect transistor. J. Phys. 187(1), 012061 (2009)
23.
Zurück zum Zitat Franklin, A.D., Sayer, R.A., Sands, T.D., Fisher, T.S., Janes, D.B.: Toward surround gates on vertical single-walled carbon nanotube devices. J. Vac. Sci. Technol. B 27(2), 821–826 (2009) Franklin, A.D., Sayer, R.A., Sands, T.D., Fisher, T.S., Janes, D.B.: Toward surround gates on vertical single-walled carbon nanotube devices. J. Vac. Sci. Technol. B 27(2), 821–826 (2009)
24.
Zurück zum Zitat Chen, Z., Farmer, D., Xu, S., Gordon, R., Avouris, P., Appenzeller, J.: Externally assembled gate-all-around carbon nanotube field effect transistor. IEEE Electron Device Lett. 29(2), 183–185 (2008)CrossRef Chen, Z., Farmer, D., Xu, S., Gordon, R., Avouris, P., Appenzeller, J.: Externally assembled gate-all-around carbon nanotube field effect transistor. IEEE Electron Device Lett. 29(2), 183–185 (2008)CrossRef
25.
Zurück zum Zitat Raychowdhury, A., Mukhopadhyay, S., Roy, K.: A circuit-compatible model of ballistic carbon nanotube field-effect transistors. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 23(10), 1411–1420 (2004)CrossRef Raychowdhury, A., Mukhopadhyay, S., Roy, K.: A circuit-compatible model of ballistic carbon nanotube field-effect transistors. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 23(10), 1411–1420 (2004)CrossRef
26.
Zurück zum Zitat Rahman, A., Guo, J., Datta, S., Lundstrom, M.S.: Theory of ballistic nanotransistors. IEEE Trans. Electron Devices 50(9), 1853–1867 (2003)CrossRef Rahman, A., Guo, J., Datta, S., Lundstrom, M.S.: Theory of ballistic nanotransistors. IEEE Trans. Electron Devices 50(9), 1853–1867 (2003)CrossRef
29.
Zurück zum Zitat Kim, Y.-B.: Integrated circuit design based on carbon nanotube field effect transistor. Trans. Electr. Electron. Mater. 12(5), 175–188 (2011)CrossRef Kim, Y.-B.: Integrated circuit design based on carbon nanotube field effect transistor. Trans. Electr. Electron. Mater. 12(5), 175–188 (2011)CrossRef
30.
Zurück zum Zitat Singh, A., Khosla, M., Raj, B.: Design and analysis of electrostatic doped Schottky barrier carbon nanotube FET based low power SRAM. Int. J. Electron. Commun. AEU 80, 67–72 (2017)CrossRef Singh, A., Khosla, M., Raj, B.: Design and analysis of electrostatic doped Schottky barrier carbon nanotube FET based low power SRAM. Int. J. Electron. Commun. AEU 80, 67–72 (2017)CrossRef
31.
Zurück zum Zitat Singh, A., Khosla, M., Raj, B.: CNTFET modelling and low power SRAM cell design. In: 2016 IEEE 5th Global Conference on Consumer Electronics (GCCE), pp. 1–4 (2016) Singh, A., Khosla, M., Raj, B.: CNTFET modelling and low power SRAM cell design. In: 2016 IEEE 5th Global Conference on Consumer Electronics (GCCE), pp. 1–4 (2016)
32.
Zurück zum Zitat Pushkarna, A., Raghavan, S., Mahmoodi, H.: Comparison of performance parameters of SRAM designs in 16 nm CMOS and CNTFET technologies. In: Proceedings of the 2010 IEEE International SOC Conference (SOCC), pp. 339–342 (2010) Pushkarna, A., Raghavan, S., Mahmoodi, H.: Comparison of performance parameters of SRAM designs in 16 nm CMOS and CNTFET technologies. In: Proceedings of the 2010 IEEE International SOC Conference (SOCC), pp. 339–342 (2010)
33.
Zurück zum Zitat Sheng, L., Kim, Y.B., Lombardi, F.: Design of a CNTFET-based SRAM cell by dual-chirality selection. IEEE Trans. Nanotechnol. 9(1), 30–37 (2010)CrossRef Sheng, L., Kim, Y.B., Lombardi, F.: Design of a CNTFET-based SRAM cell by dual-chirality selection. IEEE Trans. Nanotechnol. 9(1), 30–37 (2010)CrossRef
34.
Zurück zum Zitat Sethi, D., Kaur, M., Singh, G.: Design and performance analysis of a CNFET-based TCAM cell with dual-chirality selection. J. Comput. Electron. doi:10.1007/s10825-017-0952-4 (2017) Sethi, D., Kaur, M., Singh, G.: Design and performance analysis of a CNFET-based TCAM cell with dual-chirality selection. J. Comput. Electron. doi:10.​1007/​s10825-017-0952-4 (2017)
35.
Zurück zum Zitat Chen, Z., Farmer, D., Xu, S., Gordon, R., Avouris, P., Appenzeller, J.: Externally assembled gate-all-around carbon nanotube field-effect transistor. IEEE Electron Device Lett. 29(2), 183–185 (2008)CrossRef Chen, Z., Farmer, D., Xu, S., Gordon, R., Avouris, P., Appenzeller, J.: Externally assembled gate-all-around carbon nanotube field-effect transistor. IEEE Electron Device Lett. 29(2), 183–185 (2008)CrossRef
36.
Zurück zum Zitat Farmer, D.B., Gordon, R.G.: Atomic layer deposition on suspended single-walled carbon nanotubes via gas-phase noncovalent functionalization. Nano Lett. 6(4), 699–703 (2006)CrossRef Farmer, D.B., Gordon, R.G.: Atomic layer deposition on suspended single-walled carbon nanotubes via gas-phase noncovalent functionalization. Nano Lett. 6(4), 699–703 (2006)CrossRef
37.
Zurück zum Zitat Anis, M., Elmasry, M.: Multi-threshold CMOS digital circuits—managing leakage power, vol. 3. Kluwer Academic Publishers, Springer (2003) Anis, M., Elmasry, M.: Multi-threshold CMOS digital circuits—managing leakage power, vol. 3. Kluwer Academic Publishers, Springer (2003)
38.
Zurück zum Zitat Anis, M., Areibi, S., Elmasry, M.: Design and optimization of multithreshold CMOS (MTCMOS) circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 22(10), 1324–1342 (2003)CrossRef Anis, M., Areibi, S., Elmasry, M.: Design and optimization of multithreshold CMOS (MTCMOS) circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 22(10), 1324–1342 (2003)CrossRef
39.
Zurück zum Zitat Anantram, M.P., Leonard, F.: Physics of carbon nanotube electronic devices. Rep. Prog. Phys. 69(3), 507 (2006)CrossRef Anantram, M.P., Leonard, F.: Physics of carbon nanotube electronic devices. Rep. Prog. Phys. 69(3), 507 (2006)CrossRef
Metadaten
Titel
Design and analysis of a gate-all-around CNTFET-based SRAM cell
verfasst von
G. Saiphani Kumar
Amandeep Singh
Balwinder Raj
Publikationsdatum
22.09.2017
Verlag
Springer US
Erschienen in
Journal of Computational Electronics / Ausgabe 1/2018
Print ISSN: 1569-8025
Elektronische ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-017-1056-x

Weitere Artikel der Ausgabe 1/2018

Journal of Computational Electronics 1/2018 Zur Ausgabe

Neuer Inhalt