Skip to main content
main-content

Tipp

Weitere Kapitel dieses Buchs durch Wischen aufrufen

2020 | OriginalPaper | Buchkapitel

Design and Development of Digital Light Processing (DLP) 3D Printer

verfasst von: Yogesh Patil, Richa Patil, N. S. Chandrashekhar, K. P. Karunakaran

Erschienen in: Advances in Lightweight Materials and Structures

Verlag: Springer Singapore

share
TEILEN

Abstract

Additive manufacturing (AM), also referred to as three-dimensional printing, produces three-dimensional parts by adding material of specific layer thickness layer by layer. It is well known for its capability to create intricate and complex geometric parts and minimize the wastage of material unalike conventional manufacturing. The digital light processing (DLP) is one of the AM technologies and uses photopolymer resin as a material in liquid form and ultraviolet (UV) light to convert liquid resin into solid geometry of size and shape as per 3D model. This technique comprises of two approaches, top-down and bottom-up. In this paper, the latter method has selected for further design and development. This paper explains the overall idea of designing and fabricating the DLP 3D printer through indigenization and innovation, starting from choosing an approach to conducting the experiments. The methodology behind the design and development of the indigenous DLP 3D printer and the various problems encountered during this development have been discussed. Further, it briefly explains in-depth study carried out for the selection of several components of the printer, viz. optical components such as the projector and its orientation, mechanical components such as build platform, vat, and electronic components like stepper motor and microcontroller and shield. Conclusions have been drawn based on the results obtained after several preliminary testing carried out during this study.

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 15 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 15 Tage kostenlos.

Literatur
2.
Zurück zum Zitat Gibson I, Rosen D (2015) Additive manufacturing technologies: 3D printing, rapid prototyping and direct digital manufacturing. Johnson Matthey Technol. Rev 59(3):193–198 CrossRef Gibson I, Rosen D (2015) Additive manufacturing technologies: 3D printing, rapid prototyping and direct digital manufacturing. Johnson Matthey Technol. Rev 59(3):193–198 CrossRef
3.
Zurück zum Zitat Patil R, Patil Y (2016a) Microstereolithography: concepts and methods. Int J Modern Trends Eng Res (IJMTER) 3(4):1051–1057 Patil R, Patil Y (2016a) Microstereolithography: concepts and methods. Int J Modern Trends Eng Res (IJMTER) 3(4):1051–1057
4.
Zurück zum Zitat Gibson I, Rosen DW, Stucker B (2010) Additive manufacturing technologies: rapid prototyping to direct digital manufacturing. Springer, New York, pp 61–82 CrossRef Gibson I, Rosen DW, Stucker B (2010) Additive manufacturing technologies: rapid prototyping to direct digital manufacturing. Springer, New York, pp 61–82 CrossRef
6.
Zurück zum Zitat Mellor S, Hao L, Zhang D (2014) Additive manufacturing: a framework for implementation. Int J Prod Econ 149:194–201 CrossRef Mellor S, Hao L, Zhang D (2014) Additive manufacturing: a framework for implementation. Int J Prod Econ 149:194–201 CrossRef
7.
Zurück zum Zitat Lambert PM, Williams CB, Long TB, Bickford LR (2014) Mask projection microstereolithography system for the characterization and processing of novel photopolymer resins Lambert PM, Williams CB, Long TB, Bickford LR (2014) Mask projection microstereolithography system for the characterization and processing of novel photopolymer resins
8.
Zurück zum Zitat Galante AMS, Galante OL, Campos LL (2010) Study on application of PTFE, FEP and PFA Afluoropolymers on radiation dosimetry. Nucl Instrum Methods Phys Res A619:177–180 CrossRef Galante AMS, Galante OL, Campos LL (2010) Study on application of PTFE, FEP and PFA Afluoropolymers on radiation dosimetry. Nucl Instrum Methods Phys Res A619:177–180 CrossRef
9.
Zurück zum Zitat Chandrashekhar VA, Parag B, Prasanna G (2015) Effect of surfactant on dispersion of alumina in photopolymerizable monomers and their UV curing behavior for microstereolithography Ceram Int 41:5301–5308 Chandrashekhar VA, Parag B, Prasanna G (2015) Effect of surfactant on dispersion of alumina in photopolymerizable monomers and their UV curing behavior for microstereolithography Ceram Int 41:5301–5308
10.
Zurück zum Zitat Sun C, Fang N, Wu DM, Zhang X (2005) Projection microstereolithography using digital micro-mirror dynamic mask. Sens Actuat A121:113–120 CrossRef Sun C, Fang N, Wu DM, Zhang X (2005) Projection microstereolithography using digital micro-mirror dynamic mask. Sens Actuat A121:113–120 CrossRef
11.
Zurück zum Zitat Meier RE (1998) Digital light process for 3D printing. Texas Inst Technol J 15:64 Meier RE (1998) Digital light process for 3D printing. Texas Inst Technol J 15:64
12.
Zurück zum Zitat Schwalm R (2012) Radiation curing polymer systems, 567–579 Schwalm R (2012) Radiation curing polymer systems, 567–579
13.
Zurück zum Zitat Patil Y, Patil R (2016b) Improving Stereolithography Resolution. Int J Modern Trends Eng Res (IJMTER) 3(4):1045–1050 Patil Y, Patil R (2016b) Improving Stereolithography Resolution. Int J Modern Trends Eng Res (IJMTER) 3(4):1045–1050
14.
Zurück zum Zitat Yogesh P, Richa P, Chandrashekhar NS, Karunakaran KP (2020) Layer separation mechanisms in DLP 3D Printing. In: Shunmugam M, Kanthababu M (eds) Advances in additive manufacturing and joining. Lecture notes on multidisciplinary industrial engineering. Springer, Singapore Yogesh P, Richa P, Chandrashekhar NS, Karunakaran KP (2020) Layer separation mechanisms in DLP 3D Printing. In: Shunmugam M, Kanthababu M (eds) Advances in additive manufacturing and joining. Lecture notes on multidisciplinary industrial engineering. Springer, Singapore
17.
Zurück zum Zitat Jose Q (2010) High-resolution microstepping driver with the DRV8825/28/29/40. Texas Instruments. Application Report-SLVA443 Jose Q (2010) High-resolution microstepping driver with the DRV8825/28/29/40. Texas Instruments. Application Report-SLVA443
18.
Zurück zum Zitat Joseph MD, Alexander E, Nikita E, Edward TS (2014) WO2014126837 A2. Continuous Liquid Interphase Printing Joseph MD, Alexander E, Nikita E, Edward TS (2014) WO2014126837 A2. Continuous Liquid Interphase Printing
Metadaten
Titel
Design and Development of Digital Light Processing (DLP) 3D Printer
verfasst von
Yogesh Patil
Richa Patil
N. S. Chandrashekhar
K. P. Karunakaran
Copyright-Jahr
2020
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-7827-4_67

Premium Partner

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.