Skip to main content
Erschienen in:

29.05.2024

Design and Development of Pragmatic Load Balancing Algorithm for Cloud Environment

verfasst von: Tejinder Sharma, R. P. S Bedi

Erschienen in: Wireless Personal Communications | Ausgabe 1/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

With due span of time, Cloud computing has grown phenomenally as it is a best approach for using the scalable shared pool of resources at economical cost. Though it seems easy but distribution of the jobs assigned to various Virtual Machines (VMs) is a cumbersome task for the Data Centre (DC) Controller. Various techniques have been proposed from time-to-time for balancing the load on distinct VMs available in the DCs. The primarily used load balancing techniques are Round Robin, Equal Spread Current Execution and Throttled. The major thrust for using the aforementioned techniques is to improve the performance parameters such as Overall Response Time (ORT), Data Center Processing Time (DCPT) and Cost. In this manuscript, a new algorithm named Pragmatic Load Balancing (PLB) has been designed and developed for optimization of afore-said parameters and various simulation scenarios have also been created for the evaluation of these parameters. In the given Scenarios created by using Cloud Analyst Simulator, different number of VMs like 20, 40, 60, 80 and 100 have been allotted with distinct number of DCs from 1 to 5 to the application at each Cloud Configuration and the divulged that the value of the performance parameters have been improved by using the PLB Algorithm in comparison to other available Load Balancing Algorithms.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Vashish, K., & Shukla, S. K. (2010). A Survey on Grid Computing Approach. International Journal of Computer Science and Technology, 1(2), 192–195. Vashish, K., & Shukla, S. K. (2010). A Survey on Grid Computing Approach. International Journal of Computer Science and Technology, 1(2), 192–195.
2.
Zurück zum Zitat Ghomi, E. J., Rahmani, A. M., & Qader, N. N. (2017). Load-balancing algorithms in cloud computing: A survey. Journal of Network and Computer Applications, 88, 50–71.CrossRef Ghomi, E. J., Rahmani, A. M., & Qader, N. N. (2017). Load-balancing algorithms in cloud computing: A survey. Journal of Network and Computer Applications, 88, 50–71.CrossRef
4.
Zurück zum Zitat Devi, D. C., & Uthariaraj, V. R. (2016). Load balancing in cloud computing environment using improved weighted round robin algorithm for nonpreemptive dependent tasks. The scientific world journal, 2016. Devi, D. C., & Uthariaraj, V. R. (2016). Load balancing in cloud computing environment using improved weighted round robin algorithm for nonpreemptive dependent tasks. The scientific world journal, 2016.
5.
Zurück zum Zitat Mondal, B., Dasgupta, K., & Dutta, P. (2012). Load balancing in cloud computing using stochastic hill climbing-a soft computing approach. Procedia Technology, 4, 783–789.CrossRef Mondal, B., Dasgupta, K., & Dutta, P. (2012). Load balancing in cloud computing using stochastic hill climbing-a soft computing approach. Procedia Technology, 4, 783–789.CrossRef
6.
Zurück zum Zitat Mathur, S., Larji, A. A., & Goyal, A. (2017). Static load balancing using ASA max-min algorithm. Int J Res Appl Sci Eng Technol. Mathur, S., Larji, A. A., & Goyal, A. (2017). Static load balancing using ASA max-min algorithm. Int J Res Appl Sci Eng Technol.
7.
Zurück zum Zitat Chen, H., Wang, F., Helian, N., & Akanmu, G. (2013, February). User-priority guided Min-Min scheduling algorithm for load balancing in cloud computing. In 2013 national conference on parallel computing technologies (PARCOMPTECH) (pp. 1–8). IEEE. Chen, H., Wang, F., Helian, N., & Akanmu, G. (2013, February). User-priority guided Min-Min scheduling algorithm for load balancing in cloud computing. In 2013 national conference on parallel computing technologies (PARCOMPTECH) (pp. 1–8). IEEE.
8.
Zurück zum Zitat James, J., & Verma, B. (2012). Efficient VM load balancing algorithm for a cloud computing environment. International Journal on Computer Science and Engineering, 4(9), 1658. James, J., & Verma, B. (2012). Efficient VM load balancing algorithm for a cloud computing environment. International Journal on Computer Science and Engineering, 4(9), 1658.
9.
Zurück zum Zitat Patel, G., Mehta, R., & Bhoi, U. (2015). Enhanced load balanced min-min algorithm for static meta task scheduling in cloud computing. Procedia Computer Science, 57, 545–553.CrossRef Patel, G., Mehta, R., & Bhoi, U. (2015). Enhanced load balanced min-min algorithm for static meta task scheduling in cloud computing. Procedia Computer Science, 57, 545–553.CrossRef
10.
Zurück zum Zitat Singh, A. N., & Prakash, S. (2018). WAMLB: weighted active monitoring load balancing in cloud computing. In Big Data Analytics: Proceedings of CSI 2015 (pp. 677–685). Springer Singapore. Singh, A. N., & Prakash, S. (2018). WAMLB: weighted active monitoring load balancing in cloud computing. In Big Data Analytics: Proceedings of CSI 2015 (pp. 677–685). Springer Singapore.
11.
Zurück zum Zitat Tripathi, A. M., & Singh, S. (2018). PMAMA: Priority-based modified active monitoring load balancing algorithm in cloud computing. J Adv Res Dynam Cont Syst, 809–823. Tripathi, A. M., & Singh, S. (2018). PMAMA: Priority-based modified active monitoring load balancing algorithm in cloud computing. J Adv Res Dynam Cont Syst, 809–823.
12.
13.
Zurück zum Zitat Galloway, J. M., Smith, K. L., & Vrbsky, S. S. (2011, October). Power aware load balancing for cloud computing. In proceedings of the world congress on engineering and computer science (Vol. 1, pp. 19–21). Galloway, J. M., Smith, K. L., & Vrbsky, S. S. (2011, October). Power aware load balancing for cloud computing. In proceedings of the world congress on engineering and computer science (Vol. 1, pp. 19–21).
14.
Zurück zum Zitat Haryani, N., & Jagli, D. (2014). Dynamic method for load balancing in cloud computing. IOSR Journal of Computer Engineering (IOSR-JCE), 16(4), 23–28.CrossRef Haryani, N., & Jagli, D. (2014). Dynamic method for load balancing in cloud computing. IOSR Journal of Computer Engineering (IOSR-JCE), 16(4), 23–28.CrossRef
15.
Zurück zum Zitat Kumar, M., & Sharma, S. C. (2017). Dynamic load balancing algorithm for balancing the workload among virtual machine in cloud computing. Procedia Computer Science, 115, 322–329.CrossRef Kumar, M., & Sharma, S. C. (2017). Dynamic load balancing algorithm for balancing the workload among virtual machine in cloud computing. Procedia Computer Science, 115, 322–329.CrossRef
16.
Zurück zum Zitat Adhikari, M., & Amgoth, T. (2018). Heuristic-based load-balancing algorithm for IaaS cloud. Future Generation Computer Systems, 81, 156–165.CrossRef Adhikari, M., & Amgoth, T. (2018). Heuristic-based load-balancing algorithm for IaaS cloud. Future Generation Computer Systems, 81, 156–165.CrossRef
17.
Zurück zum Zitat Rajput, S. S., & Kushwah, V. S. (2016, December). A genetic based improved load balanced min-min task scheduling algorithm for load balancing in cloud computing. In 2016 8th international conference on Computational Intelligence and Communication Networks (CICN) (pp. 677–681). IEEE. Rajput, S. S., & Kushwah, V. S. (2016, December). A genetic based improved load balanced min-min task scheduling algorithm for load balancing in cloud computing. In 2016 8th international conference on Computational Intelligence and Communication Networks (CICN) (pp. 677–681). IEEE.
18.
Zurück zum Zitat Naha, R. K., & Othman, M. (2016). Cost-aware service brokering and performance sentient load balancing algorithms in the cloud. Journal of Network and Computer Applications, 75, 47–57.CrossRef Naha, R. K., & Othman, M. (2016). Cost-aware service brokering and performance sentient load balancing algorithms in the cloud. Journal of Network and Computer Applications, 75, 47–57.CrossRef
19.
Zurück zum Zitat Kaur, J., et al. (2017). Various load balancing algorithms for Cloud Computing. World Wide Journal of Multidisciplinary Research and Development, 3(5), 60–63. Kaur, J., et al. (2017). Various load balancing algorithms for Cloud Computing. World Wide Journal of Multidisciplinary Research and Development, 3(5), 60–63.
20.
Zurück zum Zitat Ramezani, F., Lu, J., & Hussain, F. K. (2014). Task-based system load balancing in cloud computing using particle swarm optimization. International Journal of Parallel Programming, 42, 739–754.CrossRef Ramezani, F., Lu, J., & Hussain, F. K. (2014). Task-based system load balancing in cloud computing using particle swarm optimization. International Journal of Parallel Programming, 42, 739–754.CrossRef
21.
Zurück zum Zitat Vanitha, M., & Marikkannu, P. (2017). Effective resource utilization in cloud environment through a dynamic well-organized load balancing algorithm for virtual machines. Computers & Electrical Engineering, 57, 199–208.CrossRef Vanitha, M., & Marikkannu, P. (2017). Effective resource utilization in cloud environment through a dynamic well-organized load balancing algorithm for virtual machines. Computers & Electrical Engineering, 57, 199–208.CrossRef
22.
Zurück zum Zitat Cho, K. M., Tsai, P. W., Tsai, C. W., & Yang, C. S. (2015). A hybrid meta-heuristic algorithm for VM scheduling with load balancing in cloud computing. Neural Computing and Applications, 26, 1297–1309.CrossRef Cho, K. M., Tsai, P. W., Tsai, C. W., & Yang, C. S. (2015). A hybrid meta-heuristic algorithm for VM scheduling with load balancing in cloud computing. Neural Computing and Applications, 26, 1297–1309.CrossRef
23.
Zurück zum Zitat Vasudevan, S. K., Anandaram, S., Menon, A. J., & Aravinth, A. (2016). A novel improved honey bee based load balancing technique in cloud computing environment. Asian Journal of Information Technology, 15(9), 1425–1430. Vasudevan, S. K., Anandaram, S., Menon, A. J., & Aravinth, A. (2016). A novel improved honey bee based load balancing technique in cloud computing environment. Asian Journal of Information Technology, 15(9), 1425–1430.
24.
Zurück zum Zitat Sharma, S., Luhach, A. K., & Abdhullah, S. S. (2016). An optimal load balancing technique for cloud computing environment using bat algorithm. Indian journal of science and technology, 9(28). Sharma, S., Luhach, A. K., & Abdhullah, S. S. (2016). An optimal load balancing technique for cloud computing environment using bat algorithm. Indian journal of science and technology, 9(28).
25.
Zurück zum Zitat Chaczko, Z., Mahadevan, V., Aslanzadeh, S., & Mcdermid, C. (2011, September). Availability and load balancing in cloud computing. In International conference on computer and software modeling, singapore (Vol. 14, pp. 134–140). IACSIT Press. Chaczko, Z., Mahadevan, V., Aslanzadeh, S., & Mcdermid, C. (2011, September). Availability and load balancing in cloud computing. In International conference on computer and software modeling, singapore (Vol. 14, pp. 134–140). IACSIT Press.
26.
Zurück zum Zitat Abdulhussein, A., Joshi, A. N. A., Twinamatsiko, J. H., Lashkari, A. M., A. H., & Sadeghi, M. (2012). An Efficient Load Balancing Algorithm for virtualized Cloud Data Centers. Recent Advances in Electrical and Computer Engineering, 2(7), 65–71, ISBN, 978-1. Abdulhussein, A., Joshi, A. N. A., Twinamatsiko, J. H., Lashkari, A. M., A. H., & Sadeghi, M. (2012). An Efficient Load Balancing Algorithm for virtualized Cloud Data Centers. Recent Advances in Electrical and Computer Engineering, 2(7), 65–71, ISBN, 978-1.
27.
Zurück zum Zitat Mondal, B., & Choudhury, A. (2015). Simulated annealing (SA) based load balancing strategy for cloud computing. International Journal of Computer Science and Information Technologies, 6(4), 3307–3312. Mondal, B., & Choudhury, A. (2015). Simulated annealing (SA) based load balancing strategy for cloud computing. International Journal of Computer Science and Information Technologies, 6(4), 3307–3312.
28.
Zurück zum Zitat Pasha, N., Agarwal, A., & Rastogi, R. (2014). Round robin approach for VM load balancing algorithm in cloud computing environment. International Journal of Advanced Research in Computer Science and Software Engineering, 4(5), 34–39. Pasha, N., Agarwal, A., & Rastogi, R. (2014). Round robin approach for VM load balancing algorithm in cloud computing environment. International Journal of Advanced Research in Computer Science and Software Engineering, 4(5), 34–39.
29.
Zurück zum Zitat Borovskiy, V., Wust, J., Schwarz, C., Koch, W., & Zeier, A. (2011). A linear programming approach for optimizing workload distribution in a cloud. Cloud Computing, 127–132. Borovskiy, V., Wust, J., Schwarz, C., Koch, W., & Zeier, A. (2011). A linear programming approach for optimizing workload distribution in a cloud. Cloud Computing, 127–132.
30.
Zurück zum Zitat Polepally, V., & Shahu Chatrapati, K. (2019). Dragonfly optimization and constraint measure-based load balancing in cloud computing. Cluster Computing, 22(Suppl 1), 1099–1111.CrossRef Polepally, V., & Shahu Chatrapati, K. (2019). Dragonfly optimization and constraint measure-based load balancing in cloud computing. Cluster Computing, 22(Suppl 1), 1099–1111.CrossRef
31.
Zurück zum Zitat Dasgupta, K., Mandal, B., Dutta, P., Mandal, J. K., & Dam, S. (2013). A genetic algorithm (Ga) based load balancing strategy for cloud computing. Procedia Technology, 10, 340–347.CrossRef Dasgupta, K., Mandal, B., Dutta, P., Mandal, J. K., & Dam, S. (2013). A genetic algorithm (Ga) based load balancing strategy for cloud computing. Procedia Technology, 10, 340–347.CrossRef
32.
Zurück zum Zitat Haidri, R. A., Katti, C. P., & Saxena, P. C. (2014, July). A load balancing strategy for Cloud Computing environment. In 2014 International Conference on Signal Propagation and Computer Technology (ICSPCT 2014) (pp. 636–641). IEEE. Haidri, R. A., Katti, C. P., & Saxena, P. C. (2014, July). A load balancing strategy for Cloud Computing environment. In 2014 International Conference on Signal Propagation and Computer Technology (ICSPCT 2014) (pp. 636–641). IEEE.
34.
36.
38.
Zurück zum Zitat Choi, G. W., Jo, H. G., Park, H. S., & Jang, D. W. (2020). Application of decision making model for leakage reduction to economic project in water distribution systems. Journal of Ambient Intelligence and Humanized Computing, 1–10. https://doi.org/10.1007/s12652-019-01634-2. Choi, G. W., Jo, H. G., Park, H. S., & Jang, D. W. (2020). Application of decision making model for leakage reduction to economic project in water distribution systems. Journal of Ambient Intelligence and Humanized Computing, 1–10. https://​doi.​org/​10.​1007/​s12652-019-01634-2.
45.
Zurück zum Zitat Wickremasinghe, B. (2010). Cloud analyst: A cloud-sim-based Tool for modeling and analysis of large Scale Cloud Computing environments. MEDC Project. Wickremasinghe, B. (2010). Cloud analyst: A cloud-sim-based Tool for modeling and analysis of large Scale Cloud Computing environments. MEDC Project.
46.
Zurück zum Zitat Wickremasinghe, B., Calheiros, R. N., & Buyya, R. (2010, April). Cloudanalyst: A cloudsim-based visual modeller for analysing cloud computing environments and applications. In 2010 24th IEEE international conference on advanced information networking and applications (pp. 446–452) (Australia). IEEE. Wickremasinghe, B., Calheiros, R. N., & Buyya, R. (2010, April). Cloudanalyst: A cloudsim-based visual modeller for analysing cloud computing environments and applications. In 2010 24th IEEE international conference on advanced information networking and applications (pp. 446–452) (Australia). IEEE.
47.
Zurück zum Zitat Jain, A., & Kumar, R. (2017). Critical analysis of load balancing strategies for cloud environment. International Journal of Communication Networks and Distributed Systems, 18(3–4), 213–234.CrossRef Jain, A., & Kumar, R. (2017). Critical analysis of load balancing strategies for cloud environment. International Journal of Communication Networks and Distributed Systems, 18(3–4), 213–234.CrossRef
49.
Zurück zum Zitat Razaq, A., Tianfield, H., Barrie, P., & Yue, H. (2016, July). Service broker based on cloud service description language. In 2016 15th International Symposium on Parallel and Distributed Computing (ISPDC) (pp. 196–201). IEEE. Razaq, A., Tianfield, H., Barrie, P., & Yue, H. (2016, July). Service broker based on cloud service description language. In 2016 15th International Symposium on Parallel and Distributed Computing (ISPDC) (pp. 196–201). IEEE.
50.
Zurück zum Zitat Gupta, A. (2017). Load balancing in cloud computing. International Journal of Recent Trends in Engineering and Research, 3(3), 260–267.CrossRef Gupta, A. (2017). Load balancing in cloud computing. International Journal of Recent Trends in Engineering and Research, 3(3), 260–267.CrossRef
52.
Zurück zum Zitat Mulat, W. W., Mohapatra, S. K., Sathpathy, R., & Dhal, S. K. (2022, May). Improving Throttled Load Balancing Algorithm in Cloud Computing. In Proceedings of International Joint Conference on Advances in Computational Intelligence: IJCACI 2021, (pp. 369–377). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-19-0332-8_27. Mulat, W. W., Mohapatra, S. K., Sathpathy, R., & Dhal, S. K. (2022, May). Improving Throttled Load Balancing Algorithm in Cloud Computing. In Proceedings of International Joint Conference on Advances in Computational Intelligence: IJCACI 2021, (pp. 369–377). Singapore: Springer Nature Singapore. https://​doi.​org/​10.​1007/​978-981-19-0332-8_​27.
Metadaten
Titel
Design and Development of Pragmatic Load Balancing Algorithm for Cloud Environment
verfasst von
Tejinder Sharma
R. P. S Bedi
Publikationsdatum
29.05.2024
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 1/2024
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-024-11117-z