Skip to main content

2021 | OriginalPaper | Buchkapitel

Design and Finite Element Analysis of Permanent Magnet Synchronous Generator for Wind Turbine Application

verfasst von : Abdurrahman Yavuzdeger, Burak Esenboga, Firat Ekinci, Tugce Demirdelen

Erschienen in: Numerical Methods for Energy Applications

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Today, the demand for renewable energy sources is increasing day by day in order to reduce fossil fuels and meet the increasing energy demand. The fact that wind energy is suitable for energy production at continuous or low wind speed depending on geographical conditions increases its importance among eco-friendly energy sources. However, energy efficiency is one of the most important issues in the renewable energy field because energy production from these energy sources is constantly changing due to climate changes. Therefore, it is very important to use renewable energy sources efficiently and to enable innovative developments that will increase energy efficiency. In this chapter, a more efficient wind turbine alternator is modeled and analyzed in detail by using the ANSYS/Maxwell software program. The main objective of this chapter is to create an efficient alternator model used in both vertical and horizontal wind turbines. This alternator model is selected as a permanent magnet synchronous generator (PMSG) since there is no need for external excitation, smaller in size and easy to control. Firstly, the parameters are determined by using the mathematical model of the alternator. Secondly, the alternator is modeled and designed with the help of the design parameters such as pole pair, magnetizing inductance, the stator leakage, winding properties, number of turns and slots, etc. During the design process, all materials of the alternator are designed by taking into consideration of characteristic features of them. Finally, the designed alternator is electromagnetically analyzed thanks to ANSYS/Maxwell Electromagnetic Suit program which uses the Finite Element Method (FEM). Therefore, the electrical efficiency of the wind turbine alternator at different wind speeds is performed and the optimum design of the alternator is obtained. It is hoped that this study will guide for wind power plant operators and researchers interested in wind turbine design parameters.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ekinci F, Demirdelen T, Aksu IO et al (2019) A novel hybrid metaheuristic optimization method to estimate medium-term output power for horizontal axis wind turbine. Proc Ins Mech Eng Part A J Power Energy 0957650918821040 Ekinci F, Demirdelen T, Aksu IO et al (2019) A novel hybrid metaheuristic optimization method to estimate medium-term output power for horizontal axis wind turbine. Proc Ins Mech Eng Part A J Power Energy 0957650918821040
2.
Zurück zum Zitat Widyan MS (2006) Design, optimization, construction and test of rare-earth permanent-magnet electrical machines with new topology for wind energy applications Widyan MS (2006) Design, optimization, construction and test of rare-earth permanent-magnet electrical machines with new topology for wind energy applications
3.
Zurück zum Zitat Nerg J, Ruuskanen V (2013) Lumped-parameter-based thermal analysis of a doubly radial forced-air-cooled direct-driven permanent magnet wind generator. Mathemat Comput Simulat 90:218–229MathSciNetCrossRef Nerg J, Ruuskanen V (2013) Lumped-parameter-based thermal analysis of a doubly radial forced-air-cooled direct-driven permanent magnet wind generator. Mathemat Comput Simulat 90:218–229MathSciNetCrossRef
4.
Zurück zum Zitat Kiartzis S, Kladas A (2001) Deterministic and artificial intelligence approaches in optimizing permanent magnet generators for wind power applications. J Mater Process Technol 108:232–236CrossRef Kiartzis S, Kladas A (2001) Deterministic and artificial intelligence approaches in optimizing permanent magnet generators for wind power applications. J Mater Process Technol 108:232–236CrossRef
5.
Zurück zum Zitat Arafat Y, Murshed M, Razzak MA (2015) Design and analysis of an outer rotor permanent magnet alternator for low-speed wind turbine. In: 2015 3rd international conference on green energy and technology (ICGET). IEEE, pp 1–7 Arafat Y, Murshed M, Razzak MA (2015) Design and analysis of an outer rotor permanent magnet alternator for low-speed wind turbine. In: 2015 3rd international conference on green energy and technology (ICGET). IEEE, pp 1–7
6.
Zurück zum Zitat Kalender O, Ege Y, Eskidere Ö et al (2015) A new axial flux permanent magnet synchronous alternator autonomously adapted to wind speeds. Measurement 69:87–94CrossRef Kalender O, Ege Y, Eskidere Ö et al (2015) A new axial flux permanent magnet synchronous alternator autonomously adapted to wind speeds. Measurement 69:87–94CrossRef
7.
Zurück zum Zitat Arafat MY, Murshed M, Hasan MM, Razzak MA (2016) Design aspects and performance analysis of inner and outer rotor permanent magnet alternator for direct driven low-speed wind turbine. In: 2016 2nd international conference on advances in electrical, electronics, information, communication and bio-informatics (AEEICB). IEEE, pp 604–609 Arafat MY, Murshed M, Hasan MM, Razzak MA (2016) Design aspects and performance analysis of inner and outer rotor permanent magnet alternator for direct driven low-speed wind turbine. In: 2016 2nd international conference on advances in electrical, electronics, information, communication and bio-informatics (AEEICB). IEEE, pp 604–609
8.
Zurück zum Zitat Bouaziz O, Jaafar I, Ammar FB (2016) 3D finite element modelling and comparative performance analysis between axial and radial flux machines for micro wind turbine application. In: 2016 international conference on electrical sciences and technologies in Maghreb (CISTEM). IEEE, pp 1–6 Bouaziz O, Jaafar I, Ammar FB (2016) 3D finite element modelling and comparative performance analysis between axial and radial flux machines for micro wind turbine application. In: 2016 international conference on electrical sciences and technologies in Maghreb (CISTEM). IEEE, pp 1–6
9.
Zurück zum Zitat Bazzo T, Kolzer JF, Carlson R et al (2016) Multidisciplinary design optimization of direct-drive PMSG considering the site wind profile. Electric Power Syst Res 141:467–475CrossRef Bazzo T, Kolzer JF, Carlson R et al (2016) Multidisciplinary design optimization of direct-drive PMSG considering the site wind profile. Electric Power Syst Res 141:467–475CrossRef
10.
Zurück zum Zitat Meo S, Zohoori A, Vahedi A (2016) Optimal design of permanent magnet flux switching generator for wind applications via artificial neural network and multi-objective particle swarm optimization hybrid approach. Energy Convers Manage 110:230–239CrossRef Meo S, Zohoori A, Vahedi A (2016) Optimal design of permanent magnet flux switching generator for wind applications via artificial neural network and multi-objective particle swarm optimization hybrid approach. Energy Convers Manage 110:230–239CrossRef
11.
Zurück zum Zitat Li X-M, Yang Z-X, Li Y-B et al (2016) Performance analysis of permanent magnet synchronous generators for wind energy conversion system. In: 2016 international conference on advanced mechatronic systems (ICAMechS). IEEE, pp 544–549 Li X-M, Yang Z-X, Li Y-B et al (2016) Performance analysis of permanent magnet synchronous generators for wind energy conversion system. In: 2016 international conference on advanced mechatronic systems (ICAMechS). IEEE, pp 544–549
12.
Zurück zum Zitat Kurt E, Gör H, Döner U (2016) Electromagnetic design of a new axial and radial flux generator with the rotor back-irons. Int J Hydrogen Energy 41:7019–7026 Kurt E, Gör H, Döner U (2016) Electromagnetic design of a new axial and radial flux generator with the rotor back-irons. Int J Hydrogen Energy 41:7019–7026
13.
Zurück zum Zitat Fang H, Wang D (2016) A novel design method of permanent magnet synchronous generator from perspective of permanent magnet material saving. IEEE Trans Energy Convers 32:48–54CrossRef Fang H, Wang D (2016) A novel design method of permanent magnet synchronous generator from perspective of permanent magnet material saving. IEEE Trans Energy Convers 32:48–54CrossRef
14.
Zurück zum Zitat Puri V, Chauhan YK, Singh N (2017) A comparative design study and analysis of inner and outer rotor permanent magnet synchronous machine for power generation in vertical axis wind turbine using GSA and GSA-PSO. Sustain Energy Technol Assess 23:136–148 Puri V, Chauhan YK, Singh N (2017) A comparative design study and analysis of inner and outer rotor permanent magnet synchronous machine for power generation in vertical axis wind turbine using GSA and GSA-PSO. Sustain Energy Technol Assess 23:136–148
15.
Zurück zum Zitat Laxminarayan SS, Singh M, Saifee AH, Mittal A (2017) Design, modeling and simulation of variable speed axial flux permanent magnet wind generator. Sustain Energy Technol Assess 19:114–124 Laxminarayan SS, Singh M, Saifee AH, Mittal A (2017) Design, modeling and simulation of variable speed axial flux permanent magnet wind generator. Sustain Energy Technol Assess 19:114–124
16.
Zurück zum Zitat Minaz MR, Celebi M (2017) Design and analysis of a new axial flux coreless PMSG with three rotors and double stators. Results Phys 7:183–188CrossRef Minaz MR, Celebi M (2017) Design and analysis of a new axial flux coreless PMSG with three rotors and double stators. Results Phys 7:183–188CrossRef
17.
Zurück zum Zitat Yoo J-H, Park C-S, Jung T-U (2017) Permanent magnet structure optimization for cogging torque reduction of outer rotor type radial flux permanent magnet generator. In: 2017 IEEE international electric machines and drives conference (IEMDC). IEEE, pp 1–6 Yoo J-H, Park C-S, Jung T-U (2017) Permanent magnet structure optimization for cogging torque reduction of outer rotor type radial flux permanent magnet generator. In: 2017 IEEE international electric machines and drives conference (IEMDC). IEEE, pp 1–6
18.
Zurück zum Zitat Addin Yousefian H, Kelk HM (2018) A unique optimized double-stator permanent-magnet synchronous generator in high-power wind plants. Energy 143:973–979CrossRef Addin Yousefian H, Kelk HM (2018) A unique optimized double-stator permanent-magnet synchronous generator in high-power wind plants. Energy 143:973–979CrossRef
19.
Zurück zum Zitat Asef P, Perpina RB, Barzegaran MR (2018) An innovative natural air-cooling system technique for temperature-rise suppression on the permanent magnet synchronous machines. Electric Power Syst Res 154:174–181CrossRef Asef P, Perpina RB, Barzegaran MR (2018) An innovative natural air-cooling system technique for temperature-rise suppression on the permanent magnet synchronous machines. Electric Power Syst Res 154:174–181CrossRef
20.
Zurück zum Zitat Gul W, Gao Q, Lenwari W (2018) Optimal design of a 5MW double stator single rotor permanent magnet synchronous generator for offshore direct drive wind turbines using the genetic algorithm. In: 2018 21st international conference on electrical machines and systems (ICEMS). IEEE, pp 149–155 Gul W, Gao Q, Lenwari W (2018) Optimal design of a 5MW double stator single rotor permanent magnet synchronous generator for offshore direct drive wind turbines using the genetic algorithm. In: 2018 21st international conference on electrical machines and systems (ICEMS). IEEE, pp 149–155
21.
Zurück zum Zitat Khan S, Amin S, Bukhari SSH (2019) Design and comparative performance analysis of inner rotor and inner stator axial flux permanent magnet synchronous generator for wind turbine applications. In: 2019 2nd international conference on computing, mathematics and engineering technologies (iCoMET). IEEE, pp 1–7 Khan S, Amin S, Bukhari SSH (2019) Design and comparative performance analysis of inner rotor and inner stator axial flux permanent magnet synchronous generator for wind turbine applications. In: 2019 2nd international conference on computing, mathematics and engineering technologies (iCoMET). IEEE, pp 1–7
22.
Zurück zum Zitat Jaen-Sola P, McDonald AS, Oterkus E (2019) Lightweight design of direct-drive wind turbine electrical generators: a comparison between steel and composite material structures. Ocean Eng 181:330–341CrossRef Jaen-Sola P, McDonald AS, Oterkus E (2019) Lightweight design of direct-drive wind turbine electrical generators: a comparison between steel and composite material structures. Ocean Eng 181:330–341CrossRef
23.
Zurück zum Zitat Mihai AM, Benelghali S, Livadaru L et al (2012) FEM analysis upon significance of different permanent magnet types used in a five-phase PM generator for gearless small-scale wind. In: 2012 XXth international conference on electrical machines. IEEE, pp 267–273 Mihai AM, Benelghali S, Livadaru L et al (2012) FEM analysis upon significance of different permanent magnet types used in a five-phase PM generator for gearless small-scale wind. In: 2012 XXth international conference on electrical machines. IEEE, pp 267–273
24.
Zurück zum Zitat Arumugam D, Logamani P, Karuppiah S, Thangaraj B (2017) Performance evaluation of PMSG for aircraft applications. Energy Procedia 117:385–392CrossRef Arumugam D, Logamani P, Karuppiah S, Thangaraj B (2017) Performance evaluation of PMSG for aircraft applications. Energy Procedia 117:385–392CrossRef
Metadaten
Titel
Design and Finite Element Analysis of Permanent Magnet Synchronous Generator for Wind Turbine Application
verfasst von
Abdurrahman Yavuzdeger
Burak Esenboga
Firat Ekinci
Tugce Demirdelen
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-62191-9_30