Skip to main content

2024 | OriginalPaper | Buchkapitel

Design and Implementation of a Hybrid Deep Learning Framework for Handwritten Text Recognition

verfasst von : Harshit Anand, Milind Singh, Vivian Rawade, Shubham Sahoo, Sushruta Mishra, Laith Abualigah

Erschienen in: Proceedings of Third International Conference on Computing and Communication Networks

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Text recognition technology has seen significant advancements in recent years, particularly with the use of Optical Character Recognition (OCR) to evaluate computer-generated text. However, there is much more work to be done in the field of Handwritten Text Recognition (HTR). The challenges posed by handwritten text, such as significant variations in strokes across writers, the vast variety of handwriting styles, human error and damages to the paper, present substantial difficulties in accurately identifying and recognizing handwritten alpha-numeric data. To address these challenges, we proposed a deep learning method that combines long short-term memory (MD-LSTM) and convolutional neural networks (CNN) architectures. This model can identify numbers and characters of the English language from input images. Based on MNIST dataset, bidirectional recurrent neural networks were used to construct the output sequence which was developed using the TensorFlow Framework. The accuracy for alphabets, numbers and alpha-numeric texts are 95.2%, 94.9% and 94.7% respectively. The mean character match index is computed to be 93.2%. The proposed model can substantially boost HRTs precision and efficiency making it more accessible.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Souibgui, M.A., Jemni, S.K., Kessentini, Y., Fornés, A.: Enhance to read better: a multi-task adversarial network for handwritten document image enhancement. Pattern Recognit. 123, 108370, ISSN 0031-320 (2022) Souibgui, M.A., Jemni, S.K., Kessentini, Y., Fornés, A.: Enhance to read better: a multi-task adversarial network for handwritten document image enhancement. Pattern Recognit. 123, 108370, ISSN 0031-320 (2022)
2.
Zurück zum Zitat Sudholt, S., Fink, G.A.: PHOCNet: a deep convolutional neural network for word spotting in handwritten documents. In: Proceedings of the 14th International Conference on Document Analysis and Recognition (ICDAR), pp. 1122–1127 (2017) Sudholt, S., Fink, G.A.: PHOCNet: a deep convolutional neural network for word spotting in handwritten documents. In: Proceedings of the 14th International Conference on Document Analysis and Recognition (ICDAR), pp. 1122–1127 (2017)
3.
Zurück zum Zitat Voigtlaender, P., Doetsch, P., Ney, H.: Handwriting recognition with large multidimensional long short-term memory recurrent neural networks. In: Proceedings of the 14th International Conference on Document Analysis and Recognition (ICDAR), pp. 31–36 (2017) Voigtlaender, P., Doetsch, P., Ney, H.: Handwriting recognition with large multidimensional long short-term memory recurrent neural networks. In: Proceedings of the 14th International Conference on Document Analysis and Recognition (ICDAR), pp. 31–36 (2017)
4.
Zurück zum Zitat Hu, L., Zanibbi, R.: MST-based parsing of online handwritten mathematical expressions. In: Proceedings of the 13th International Conference on Document Analysis and Recognition (ICDAR), pp. 541–545 (2015) Hu, L., Zanibbi, R.: MST-based parsing of online handwritten mathematical expressions. In: Proceedings of the 13th International Conference on Document Analysis and Recognition (ICDAR), pp. 541–545 (2015)
5.
Zurück zum Zitat Goyal, S., Jayasree, A.R., Balasubramanian, R.: Handwritten text recognition using ensemble of deep convolutional neural networks. In: Proceedings of the 15th International Conference on Frontiers in Handwriting Recognition (ICFHR), pp. 181–186 (2018) Goyal, S., Jayasree, A.R., Balasubramanian, R.: Handwritten text recognition using ensemble of deep convolutional neural networks. In: Proceedings of the 15th International Conference on Frontiers in Handwriting Recognition (ICFHR), pp. 181–186 (2018)
6.
Zurück zum Zitat Sun, L., Tang, X., Wan, J.: Handwritten text recognition using a convolutional neural network with a novel loss function. In: Proceedings of the 16th International Conference on Frontiers in Handwriting Recognition (ICFHR), pp. 443–448 (2019) Sun, L., Tang, X., Wan, J.: Handwritten text recognition using a convolutional neural network with a novel loss function. In: Proceedings of the 16th International Conference on Frontiers in Handwriting Recognition (ICFHR), pp. 443–448 (2019)
7.
Zurück zum Zitat Ghosal, T., Sinha, R., Roy, P.P.: Handwritten text recognition using convolutional neural networks with grapheme-level information. In: Proceedings of the 15th International Conference on Frontiers in Handwriting Recognition (ICFHR), pp. 396–401 (2018) Ghosal, T., Sinha, R., Roy, P.P.: Handwritten text recognition using convolutional neural networks with grapheme-level information. In: Proceedings of the 15th International Conference on Frontiers in Handwriting Recognition (ICFHR), pp. 396–401 (2018)
8.
Zurück zum Zitat Sharma, S., Uppal, A., Kaur, M.: Handwritten text recognition using deep convolutional neural networks and long short-term memory networks. In: Proceedings of the 15th International Conference on Frontiers in Handwriting Recognition (ICFHR), pp. 26–31 (2018) Sharma, S., Uppal, A., Kaur, M.: Handwritten text recognition using deep convolutional neural networks and long short-term memory networks. In: Proceedings of the 15th International Conference on Frontiers in Handwriting Recognition (ICFHR), pp. 26–31 (2018)
9.
Zurück zum Zitat Das, S., Nag, K., Das, D.: Handwritten text recognition using a deep residual network with bidirectional long short-term memory layers. In: Proceedings of the 16th International Conference on Frontiers in Handwriting Recognition (ICFHR), pp. 236–241 (2019) Das, S., Nag, K., Das, D.: Handwritten text recognition using a deep residual network with bidirectional long short-term memory layers. In: Proceedings of the 16th International Conference on Frontiers in Handwriting Recognition (ICFHR), pp. 236–241 (2019)
10.
Zurück zum Zitat Das, A., Srivastava, S., Das Mandal, S. K.: Handwritten text recognition using convolutional neural networks and long short-term memory networks. In: Proceedings of the 15th International Conference on Frontiers in Handwriting Recognition (ICFHR), pp. 32–37 (2018) Das, A., Srivastava, S., Das Mandal, S. K.: Handwritten text recognition using convolutional neural networks and long short-term memory networks. In: Proceedings of the 15th International Conference on Frontiers in Handwriting Recognition (ICFHR), pp. 32–37 (2018)
11.
Zurück zum Zitat Niranjan, M., Kumar, R.S., Saravanan, V.: A comparative study of machine learning techniques for handwritten character recognition. Int. J. Pure Appl. Math. 119(16), 685–695 (2018) Niranjan, M., Kumar, R.S., Saravanan, V.: A comparative study of machine learning techniques for handwritten character recognition. Int. J. Pure Appl. Math. 119(16), 685–695 (2018)
12.
Zurück zum Zitat Seal, A., Mandal, A., Chanda, B.: Handwritten text recognition using convolutional neural networks and recurrent neural networks. In: Proceedings of the 15th International Conference on Frontiers in Handwriting Recognition (ICFHR), pp. 298–303 (2018) Seal, A., Mandal, A., Chanda, B.: Handwritten text recognition using convolutional neural networks and recurrent neural networks. In: Proceedings of the 15th International Conference on Frontiers in Handwriting Recognition (ICFHR), pp. 298–303 (2018)
13.
Zurück zum Zitat Reddy, K., Dhanireddy, R. P., Hemanth Kumar G.: Handwritten text recognition using deep belief networks. In: Proceedings of the 15th International Conference on Frontiers in Handwriting Recognition (ICFHR), pp. 313–318 (2018) Reddy, K., Dhanireddy, R. P., Hemanth Kumar G.: Handwritten text recognition using deep belief networks. In: Proceedings of the 15th International Conference on Frontiers in Handwriting Recognition (ICFHR), pp. 313–318 (2018)
14.
Zurück zum Zitat Roy, A., Nagabhushan, P., Das, S.: Handwritten text recognition using a convolutional neural network ensemble. In: Proceedings of the 15th International Conference on Frontiers in Handwriting Recognition (ICFHR), 2018, pp. 452–457. Roy, A., Nagabhushan, P., Das, S.: Handwritten text recognition using a convolutional neural network ensemble. In: Proceedings of the 15th International Conference on Frontiers in Handwriting Recognition (ICFHR), 2018, pp. 452–457.
15.
Zurück zum Zitat Fink, G.A., Uchida, S., Märgner, V.: A review of recent advances in handwritten text recognition. In: Proceedings of the 16th International Conference on Frontiers in Handwriting Recognition (ICFHR), pp. 119–124 (2018) Fink, G.A., Uchida, S., Märgner, V.: A review of recent advances in handwritten text recognition. In: Proceedings of the 16th International Conference on Frontiers in Handwriting Recognition (ICFHR), pp. 119–124 (2018)
16.
Zurück zum Zitat Mishra, N., Mishra, S., Tripathy, H.K.: Rice yield estimation using deep learning. In: Innovations in Intelligent Computing and Communication: First International Conference, ICIICC 2022, Bhubaneswar, Odisha, India, December 16–17, 2022, Proceedings (pp. 379-388). Springer International Publishing, Cham (2023, January) Mishra, N., Mishra, S., Tripathy, H.K.: Rice yield estimation using deep learning. In: Innovations in Intelligent Computing and Communication: First International Conference, ICIICC 2022, Bhubaneswar, Odisha, India, December 16–17, 2022, Proceedings (pp. 379-388). Springer International Publishing, Cham (2023, January)
17.
Zurück zum Zitat Chakraborty, S., Mishra, S., Tripathy, H.K.: COVID-19 outbreak estimation approach using hybrid time series modelling. In: Innovations in Intelligent Computing and Communication: First International Conference, ICIICC 2022, Bhubaneswar, Odisha, India, December 16–17, 2022, Proceedings, pp. 249–260. Springer International Publishing, Cham (2023, January) Chakraborty, S., Mishra, S., Tripathy, H.K.: COVID-19 outbreak estimation approach using hybrid time series modelling. In: Innovations in Intelligent Computing and Communication: First International Conference, ICIICC 2022, Bhubaneswar, Odisha, India, December 16–17, 2022, Proceedings, pp. 249–260. Springer International Publishing, Cham (2023, January)
18.
Zurück zum Zitat Verma, S., Mishra, S.: An exploration analysis of social media security. In: Predictive Data Security Using AI: Insights and Issues of Blockchain, IoT, and DevOps, pp. 25–44. Springer Nature Singapore, Singapore (2022) Verma, S., Mishra, S.: An exploration analysis of social media security. In: Predictive Data Security Using AI: Insights and Issues of Blockchain, IoT, and DevOps, pp. 25–44. Springer Nature Singapore, Singapore (2022)
19.
Zurück zum Zitat Singh, P., Mishra, S.: A comprehensive study of security aspects in blockchain. In: Predictive Data Security using AI: Insights and Issues of Blockchain, IoT, and DevOps, pp. 1–24. Springer Nature Singapore, Singapore (2022) Singh, P., Mishra, S.: A comprehensive study of security aspects in blockchain. In: Predictive Data Security using AI: Insights and Issues of Blockchain, IoT, and DevOps, pp. 1–24. Springer Nature Singapore, Singapore (2022)
20.
Zurück zum Zitat Swain, T., Mishra, S.: Evolution of machine learning algorithms for enhancement of self-driving vehicles security. In: 2022 International Conference on Advancements in Smart, Secure and Intelligent Computing (ASSIC), pp. 1–5. IEEE (2022, November) Swain, T., Mishra, S.: Evolution of machine learning algorithms for enhancement of self-driving vehicles security. In: 2022 International Conference on Advancements in Smart, Secure and Intelligent Computing (ASSIC), pp. 1–5. IEEE (2022, November)
21.
Zurück zum Zitat Sahoo, S., Mishra, S.: A comparative analysis of PGGAN with other data augmentation technique for brain tumor classification. In: 2022 International Conference on Advancements in Smart, Secure and Intelligent Computing (ASSIC), pp. 1–7. IEEE (2022, November) Sahoo, S., Mishra, S.: A comparative analysis of PGGAN with other data augmentation technique for brain tumor classification. In: 2022 International Conference on Advancements in Smart, Secure and Intelligent Computing (ASSIC), pp. 1–7. IEEE (2022, November)
22.
Zurück zum Zitat Mohapatra, S.K., Mishra, S., Tripathy, H.K.: Energy consumption prediction in electrical appliances of commercial buildings using LSTM-GRU model. In: 2022 International Conference on Advancements in Smart, Secure and Intelligent Computing (ASSIC), pp. 1–5. IEEE (2022, November) Mohapatra, S.K., Mishra, S., Tripathy, H.K.: Energy consumption prediction in electrical appliances of commercial buildings using LSTM-GRU model. In: 2022 International Conference on Advancements in Smart, Secure and Intelligent Computing (ASSIC), pp. 1–5. IEEE (2022, November)
23.
Zurück zum Zitat Tripathy, H.K., Mishra, S.: A succinct analytical study of the usability of encryption methods in healthcare data security. In: Next Generation Healthcare Informatics, pp. 105–120. Springer Nature Singapore, Singapore (2022) Tripathy, H.K., Mishra, S.: A succinct analytical study of the usability of encryption methods in healthcare data security. In: Next Generation Healthcare Informatics, pp. 105–120. Springer Nature Singapore, Singapore (2022)
24.
Zurück zum Zitat Adrija, M., Yash, A., Sushruta, M.: 8 Pragmatic study of IoT in healthcare security with an explainable AI perspective. In: Explainable Artificial Intelligence for Biomedical Applications, pp. 145–166. River Publishers (2023) Adrija, M., Yash, A., Sushruta, M.: 8 Pragmatic study of IoT in healthcare security with an explainable AI perspective. In: Explainable Artificial Intelligence for Biomedical Applications, pp. 145–166. River Publishers (2023)
25.
Zurück zum Zitat Bhavya, M., Pranshu, S., Sushruta, M., Sibanjan, D.: 17 comparative analysis of breast cancer diagnosis driven by the smart IoT-based approach. In: Explainable Artificial Intelligence for Biomedical Applications, pp. 353–374. River Publishers (2023) Bhavya, M., Pranshu, S., Sushruta, M., Sibanjan, D.: 17 comparative analysis of breast cancer diagnosis driven by the smart IoT-based approach. In: Explainable Artificial Intelligence for Biomedical Applications, pp. 353–374. River Publishers (2023)
Metadaten
Titel
Design and Implementation of a Hybrid Deep Learning Framework for Handwritten Text Recognition
verfasst von
Harshit Anand
Milind Singh
Vivian Rawade
Shubham Sahoo
Sushruta Mishra
Laith Abualigah
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-0892-5_22