Skip to main content
Erschienen in:

20.05.2024

Design and Implementation of a Wide-Swing CMOS Multiplier for AC Source Signal Tracking and Modulation

verfasst von: Wei Wang, Sendren Sheng-Dong Xu, Chi-Lin Chen, Huang-Jen Chiu

Erschienen in: Circuits, Systems, and Signal Processing | Ausgabe 9/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The multiplier is a pervasive critical component today. However, most of them are difficult to be integrated into an integrated circuit. In this study, we proposed a novel analog multiplier for AC power application, using CMOS process to realize the analog voltage multiplication function of double-ended input and single-ended output. Under the working voltage of 3.3 V, the multiplier can operate with a wide input voltage range of 0–1.6 V (about 48.8% of the working voltage) and a wide output voltage range of 0–2.56 V (about 77.5% of the working voltage). The multiplier is implemented through the current difference between two NMOSs operating in the linear region and the saturation region, respectively. Compared with the existing technique, the proposed analog multiplier has a wider input and output range, and better linearity. It is suitable for AC power signal tracking and modulation. Finally, the United Microelectronics Corporation 0.18 μm 1P4M CMOS standard process was used for physical implementation. Moreover, there is not any BJT or special device used. It was measured that the analog multiplier circuit consumes about 0.56 mW at a working voltage of 3.3 V.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

ATZelektronik

Die Fachzeitschrift ATZelektronik bietet für Entwickler und Entscheider in der Automobil- und Zulieferindustrie qualitativ hochwertige und fundierte Informationen aus dem gesamten Spektrum der Pkw- und Nutzfahrzeug-Elektronik. 

Lassen Sie sich jetzt unverbindlich 2 kostenlose Ausgabe zusenden.

ATZelectronics worldwide

ATZlectronics worldwide is up-to-speed on new trends and developments in automotive electronics on a scientific level with a high depth of information. 

Order your 30-days-trial for free and without any commitment.

Weitere Produktempfehlungen anzeigen
Literatur
1.
Zurück zum Zitat Y. Babacan, Ultra-low voltage and low-power voltage-mode DTMOS-based four-quadrant analog multiplier, in Proceedings of the Analog Integrated Circuits and Signal Processing (2019), pp. 39–45 Y. Babacan, Ultra-low voltage and low-power voltage-mode DTMOS-based four-quadrant analog multiplier, in Proceedings of the Analog Integrated Circuits and Signal Processing (2019), pp. 39–45
2.
Zurück zum Zitat B. Boonchu, Low-voltage low-power sub-threshold CMOS four-quadrant analogue multiplier, in Proceedings of the International Electrical Engineering Congress (iEECON) (2018), pp. 1–4 B. Boonchu, Low-voltage low-power sub-threshold CMOS four-quadrant analogue multiplier, in Proceedings of the International Electrical Engineering Congress (iEECON) (2018), pp. 1–4
3.
Zurück zum Zitat Y. Gui, J.D. Bendtsen, J. Stoustrup, Sliding mode control with grid voltage modulated direct power control for three-phase AC–DC converter, in Proceedings of the Chinese Control Conference (CCC) (2019), pp. 7436–7441 Y. Gui, J.D. Bendtsen, J. Stoustrup, Sliding mode control with grid voltage modulated direct power control for three-phase AC–DC converter, in Proceedings of the Chinese Control Conference (CCC) (2019), pp. 7436–7441
4.
Zurück zum Zitat Y. Gui, M. Li, J. Lu, S. Golestan, J.C. Vasquez, A voltage modulated DPC approach for three-phase PWM rectifier. IEEE Trans. Ind. Electron. 65(10), 7612–7619 (2018)CrossRef Y. Gui, M. Li, J. Lu, S. Golestan, J.C. Vasquez, A voltage modulated DPC approach for three-phase PWM rectifier. IEEE Trans. Ind. Electron. 65(10), 7612–7619 (2018)CrossRef
5.
Zurück zum Zitat G.A. Hadgis, P.R. Mukund, A novel CMOS monolithic analog multiplier with wide input dynamic range, in Proceedings of the International Conference on VLSI Design (1995), pp. 310–314 G.A. Hadgis, P.R. Mukund, A novel CMOS monolithic analog multiplier with wide input dynamic range, in Proceedings of the International Conference on VLSI Design (1995), pp. 310–314
6.
Zurück zum Zitat S. Hadidi, A. Hassanzadeh, An ultra-low-power and high-gain four-quadrant qnalog multiplier based on dynamic threshold MOSFET (DTMOS), in Proceedings of the Iranian Conference on Electrical Engineering (ICEE) (2020), pp. 1–5 S. Hadidi, A. Hassanzadeh, An ultra-low-power and high-gain four-quadrant qnalog multiplier based on dynamic threshold MOSFET (DTMOS), in Proceedings of the Iranian Conference on Electrical Engineering (ICEE) (2020), pp. 1–5
7.
Zurück zum Zitat G. Han, E. Sanchez-Sinencio, CMOS transconductance multipliers: a tutorial. IEEE Trans. Circuits Syst. II Analog Digit Signal Process. 45(12), 1550–1563 (1998)CrossRef G. Han, E. Sanchez-Sinencio, CMOS transconductance multipliers: a tutorial. IEEE Trans. Circuits Syst. II Analog Digit Signal Process. 45(12), 1550–1563 (1998)CrossRef
8.
Zurück zum Zitat Z. Huang, Y. Inoue, H. Yu, Q. Zhang, A wide dynamic range four-quadrant CMOS analog multiplier using active feedback, in Proceedings of the IEEE Asia Pacific Conference on Circuits and Systems (2006), pp. 708–711 Z. Huang, Y. Inoue, H. Yu, Q. Zhang, A wide dynamic range four-quadrant CMOS analog multiplier using active feedback, in Proceedings of the IEEE Asia Pacific Conference on Circuits and Systems (2006), pp. 708–711
9.
Zurück zum Zitat Y. Li, Y. Yang, Z. Zhu, W. Qiang, A novel low THD 4-quadrant analog multiplier using feedforward compensation for PFC, in Proceedings of the IEEE International Conference on ASIC (2011), pp. 878–881 Y. Li, Y. Yang, Z. Zhu, W. Qiang, A novel low THD 4-quadrant analog multiplier using feedforward compensation for PFC, in Proceedings of the IEEE International Conference on ASIC (2011), pp. 878–881
10.
Zurück zum Zitat H.R. Mehrvarz, C.Y. Kwok, A novel multi-input floating-gate MOS four quadrant analog multiplier. IEEE J. Solid State Circuits 31(8), 1123–1131 (1996)CrossRef H.R. Mehrvarz, C.Y. Kwok, A novel multi-input floating-gate MOS four quadrant analog multiplier. IEEE J. Solid State Circuits 31(8), 1123–1131 (1996)CrossRef
11.
Zurück zum Zitat T. Oshima, Y. Nakamura, T. Yamawaki, Fast CMOS analog multiplier and divider with continuous-time inverter-based flash digitizer. IEEE Trans. Circuits Syst. II Express Briefs 69(3), 934–938 (2022) T. Oshima, Y. Nakamura, T. Yamawaki, Fast CMOS analog multiplier and divider with continuous-time inverter-based flash digitizer. IEEE Trans. Circuits Syst. II Express Briefs 69(3), 934–938 (2022)
12.
Zurück zum Zitat P. Prommee, M. Somdunyakanok, K. Angkaew, A. Jodtang, K. Dejhan, Single low-supply and low-distortion CMOS analog multiplier, in Proceedings of the IEEE International Symposium on Communications and Information Technology (2005), pp. 251–254 P. Prommee, M. Somdunyakanok, K. Angkaew, A. Jodtang, K. Dejhan, Single low-supply and low-distortion CMOS analog multiplier, in Proceedings of the IEEE International Symposium on Communications and Information Technology (2005), pp. 251–254
13.
Zurück zum Zitat J. Rajpoot, S. Maheshwari, High performance four-quadrant analog multiplier using DXCCII. Circuits Syst. Signal Process. 39, 54–64 (2020)CrossRef J. Rajpoot, S. Maheshwari, High performance four-quadrant analog multiplier using DXCCII. Circuits Syst. Signal Process. 39, 54–64 (2020)CrossRef
14.
Zurück zum Zitat R. Ramabhadran, Y. Levy, B. Roberts, V. Pradeep, Low THD multipliers for BCM buck and cascaded buck-boost PFC converters, in Proceedings of the IEEE Energy Conversion Congress and Exposition (ECCE)(2017), pp. 5293–5297 R. Ramabhadran, Y. Levy, B. Roberts, V. Pradeep, Low THD multipliers for BCM buck and cascaded buck-boost PFC converters, in Proceedings of the IEEE Energy Conversion Congress and Exposition (ECCE)(2017), pp. 5293–5297
15.
Zurück zum Zitat E. Sackinger, W. Guggenbuhl, A versatile building block: the CMOS differential difference amplifier. IEEE J. Solid State Circuits 22(2), 287–294 (1987)CrossRef E. Sackinger, W. Guggenbuhl, A versatile building block: the CMOS differential difference amplifier. IEEE J. Solid State Circuits 22(2), 287–294 (1987)CrossRef
16.
Zurück zum Zitat S. Saidi, R. Abbassi, S. Chebbi, Quality improvement of shunt active power filter with direct instantaneous power estimator based on virtual flux. Int. J. Control. Autom. Syst. 14(5), 1309–1321 (2016)CrossRef S. Saidi, R. Abbassi, S. Chebbi, Quality improvement of shunt active power filter with direct instantaneous power estimator based on virtual flux. Int. J. Control. Autom. Syst. 14(5), 1309–1321 (2016)CrossRef
17.
Zurück zum Zitat R. Sotner, L. Polak, J. Jerabek, J. Petrzela, V. Kledrowetz, Analog multipliers-based double output voltage phase detector for low-frequency demodulation of frequency modulated signals. IEEE Access 9, 93062–93078 (2021)CrossRef R. Sotner, L. Polak, J. Jerabek, J. Petrzela, V. Kledrowetz, Analog multipliers-based double output voltage phase detector for low-frequency demodulation of frequency modulated signals. IEEE Access 9, 93062–93078 (2021)CrossRef
18.
Zurück zum Zitat X. Tang, K.M. Tsang, W.L. Chan, Active power filter using nonlinear repetitive controller. Int. J. Control. Autom. Syst. 9(1), 132–138 (2011)CrossRef X. Tang, K.M. Tsang, W.L. Chan, Active power filter using nonlinear repetitive controller. Int. J. Control. Autom. Syst. 9(1), 132–138 (2011)CrossRef
19.
Zurück zum Zitat R. Vauche, Z. Benjelloun, R.A.B. Mefteh, W. Rahajandraibe, R. Bouchakour, H. Barthelemy, Design and analysis of a Gilbert analog multiplier for input dynamic range optimization, in Proceedings of the Design & Technology of Integrated Systems in Nanoscale Era (DTIS) (2020), pp. 1–6 R. Vauche, Z. Benjelloun, R.A.B. Mefteh, W. Rahajandraibe, R. Bouchakour, H. Barthelemy, Design and analysis of a Gilbert analog multiplier for input dynamic range optimization, in Proceedings of the Design & Technology of Integrated Systems in Nanoscale Era (DTIS) (2020), pp. 1–6
20.
Zurück zum Zitat Z. Wang, Automatic VT extractors based on an n*n/sup 2/MOS transistor array and their application. IEEE J. Solid State Circuits 27(9), 1277–1285 (1992)CrossRef Z. Wang, Automatic VT extractors based on an n*n/sup 2/MOS transistor array and their application. IEEE J. Solid State Circuits 27(9), 1277–1285 (1992)CrossRef
21.
Zurück zum Zitat G. Zamora-Mejia, A. Diaz-Armendariz, H. Santiago-Ramirez, J.M. Rocha-Perez, C.A. Gracios-Marin, A. Diaz-Sanchez, Gate and buck-driven four-quadrant CMOS analog multiplier. Circuits Syst. Signal Process. 38, 1547–1560 (2019)CrossRef G. Zamora-Mejia, A. Diaz-Armendariz, H. Santiago-Ramirez, J.M. Rocha-Perez, C.A. Gracios-Marin, A. Diaz-Sanchez, Gate and buck-driven four-quadrant CMOS analog multiplier. Circuits Syst. Signal Process. 38, 1547–1560 (2019)CrossRef
22.
Zurück zum Zitat Z.Q. Zeng, J.G. Hu, J. Wu, Q.H. Zhong, D.M. Wang, A high precision analog temperature compensated crystal oscillator using a new temperature compensated multiplier. IEEE Trans. Circuits Syst. I Regul. Pap. 70(2), 680–693 (2023)CrossRef Z.Q. Zeng, J.G. Hu, J. Wu, Q.H. Zhong, D.M. Wang, A high precision analog temperature compensated crystal oscillator using a new temperature compensated multiplier. IEEE Trans. Circuits Syst. I Regul. Pap. 70(2), 680–693 (2023)CrossRef
Metadaten
Titel
Design and Implementation of a Wide-Swing CMOS Multiplier for AC Source Signal Tracking and Modulation
verfasst von
Wei Wang
Sendren Sheng-Dong Xu
Chi-Lin Chen
Huang-Jen Chiu
Publikationsdatum
20.05.2024
Verlag
Springer US
Erschienen in
Circuits, Systems, and Signal Processing / Ausgabe 9/2024
Print ISSN: 0278-081X
Elektronische ISSN: 1531-5878
DOI
https://doi.org/10.1007/s00034-024-02632-2