Skip to main content

2024 | OriginalPaper | Buchkapitel

Design and Implementation of Risk Control Model Based on Deep Ensemble Learning Algorithm

verfasst von : Maoguang Wang, Ying Cui

Erschienen in: Intelligent Information Processing XII

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper aims to explore the concept of “depth” through the selection of various ensemble methods and proposes a practical deep ensemble learning method. In this study, we propose a nested ensemble learning method. First, we employ the stacking framework for selective ensemble learning. Next, we integrate the stacked ensemble with bagging and boosting techniques to create a comprehensive stacked ensemble. We utilized both domestic and foreign online loan data to build the model and test its ability to generalize. The experimental results demonstrate that the nested ensemble proposed in this paper outperforms models such as logistic regression and support vector machines, showing exceptional generalization ability.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Lixiang, Z.: Reflections on bank credit risk management under the new situation. SME Manag. Technol. 698(05), 127–129 (2023) Lixiang, Z.: Reflections on bank credit risk management under the new situation. SME Manag. Technol. 698(05), 127–129 (2023)
2.
Zurück zum Zitat Yu, L., Wang, S., Lai, K.K.: Credit risk assessment with a multistage neural network ensemble learning approach. Expert Syst. Appl. 34(2), 1434–1444 (2008)CrossRef Yu, L., Wang, S., Lai, K.K.: Credit risk assessment with a multistage neural network ensemble learning approach. Expert Syst. Appl. 34(2), 1434–1444 (2008)CrossRef
3.
Zurück zum Zitat Zhao ming, W., Xichuan, H.: Algorithm optimization based on LightGBM credit risk control model. Comput. Appl. Software 39(06), 342–349 (2022) Zhao ming, W., Xichuan, H.: Algorithm optimization based on LightGBM credit risk control model. Comput. Appl. Software 39(06), 342–349 (2022)
6.
Zurück zum Zitat Pan, D.: Research on credit risk control strategy of Internet consumer Finance based on Xgboost. Xiangtan University (2018) Pan, D.: Research on credit risk control strategy of Internet consumer Finance based on Xgboost. Xiangtan University (2018)
7.
Zurück zum Zitat Mao guang, W., Xing, Y.: A risk control model and algorithm based on AP-Entropy selection ensemble. Comput. Sci. 48(S2), 71–76+80 (2021) Mao guang, W., Xing, Y.: A risk control model and algorithm based on AP-Entropy selection ensemble. Comput. Sci. 48(S2), 71–76+80 (2021)
8.
Zurück zum Zitat Khashman, A.: Neural networks for credit risk evaluation: Investigation of different neural models and learning schemes. Expert Syst. Appl. 37(9), 6233–6239 (2010)CrossRef Khashman, A.: Neural networks for credit risk evaluation: Investigation of different neural models and learning schemes. Expert Syst. Appl. 37(9), 6233–6239 (2010)CrossRef
9.
Zurück zum Zitat Uddin, M.S., Chi, G., Al Janabi, M.A.M., et al.: Leveraging random forest in micro‐enterprises credit risk modelling for accuracy and interpretability. Int. J. Finan. Econ. 27(3), 3713–3729 (2022) Uddin, M.S., Chi, G., Al Janabi, M.A.M., et al.: Leveraging random forest in micro‐enterprises credit risk modelling for accuracy and interpretability. Int. J. Finan. Econ. 27(3), 3713–3729 (2022)
10.
Zurück zum Zitat Papouskova, M., Hajek, P.: Two-stage consumer credit risk modelling using heterogeneous ensemble learning[J]. Decis. Support Syst. 118, 33–45 (2019)CrossRef Papouskova, M., Hajek, P.: Two-stage consumer credit risk modelling using heterogeneous ensemble learning[J]. Decis. Support Syst. 118, 33–45 (2019)CrossRef
11.
Zurück zum Zitat Kohavi, R., Wolpert, D.H.: Bias plus variance decomposition for zero-one loss functions. In: ICML, vol. 96, pp. 275–83 (1996) Kohavi, R., Wolpert, D.H.: Bias plus variance decomposition for zero-one loss functions. In: ICML, vol. 96, pp. 275–83 (1996)
Metadaten
Titel
Design and Implementation of Risk Control Model Based on Deep Ensemble Learning Algorithm
verfasst von
Maoguang Wang
Ying Cui
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-57808-3_9