Skip to main content
Erschienen in:
Buchtitelbild

2021 | OriginalPaper | Buchkapitel

Design and Modeling of Fuel Cell Hybrid Electric Vehicle for Urban Transportation

verfasst von : Mallikarjunareddy Bandi, Naveenkumar Marati, Balraj Vaithilingam, Kathirvel Karuppazhagi

Erschienen in: Electric Vehicles

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

There is a need of integration between fuel cell (FC) and battery to help electric vehicle to work under cold start, acceleration and deceleration modes, which are problems unique to an electric vehicle application. The dynamics of FC is slower compared with the electric vehicle load dynamics and there is a need to design suitable converters for interfacing auxiliary source during this period. The converters interfacing the auxiliary power source (battery) need to have faster dynamic response so that it can interface the battery with DC bus bar. In the fuel cell hybrid electric vehicle (FCHEV), during cold start mode, the battery supplies to the DC bus bar during the heat up process. In this article, the architecture of FCHEV has been developed using a resonant DAB-IBDC converter with symmetric CLLC. The architecture of FCHEV had analyzed and modeled in this manuscript. The model of FC accounting for material conservation, delay effects due to fuel and oxidant, and losses has also developed to get more accurate FC output voltage. The operation of the FCHEV during cold start, normal, acceleration and deceleration conditions studied in detail. Furthermore, simulation results of the designed 1.4 kW EV verify with theoretical analysis in the four modes for urban transport applications especially for three-wheeler applications like e-rickshaw.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat B. Cook, Introduction to fuel cells and hydrogen technology. Eng. Sci. Educ. J. 11(6), 205–216 (2002)CrossRef B. Cook, Introduction to fuel cells and hydrogen technology. Eng. Sci. Educ. J. 11(6), 205–216 (2002)CrossRef
2.
Zurück zum Zitat N.H. Jafri, S. Gupta, An overview of FCs application in transportation, in IEEE Transportation Electrification Conference and Expo (Asia-Pacific (ITEC Asia-Pacific), Busan), pp. 129–133 (2016) N.H. Jafri, S. Gupta, An overview of FCs application in transportation, in IEEE Transportation Electrification Conference and Expo (Asia-Pacific (ITEC Asia-Pacific), Busan), pp. 129–133 (2016)
3.
Zurück zum Zitat Fuel Cell Handbook, 7th edn., EG&G Services, Inc., Science Applications International Corporation, DOE, Office of Fossil Energy, National Energy Technology Laboratory (2004) Fuel Cell Handbook, 7th edn., EG&G Services, Inc., Science Applications International Corporation, DOE, Office of Fossil Energy, National Energy Technology Laboratory (2004)
4.
Zurück zum Zitat Wikipedia, The Free Encyclopaedia, List of Fuel Cell Vehicles. Accessed 24 Mar 2019 Wikipedia, The Free Encyclopaedia, List of Fuel Cell Vehicles. Accessed 24 Mar 2019
5.
Zurück zum Zitat Wikipedia, The Free Encyclopaedia, Fuel Cell Vehicle. Accessed 24 March 2019 Wikipedia, The Free Encyclopaedia, Fuel Cell Vehicle. Accessed 24 March 2019
6.
Zurück zum Zitat S. Thomas, M. Zalbowitz, Fuel Cells-Green Power (Los Alamos National Laboratory, Los Alamos, New Mexico) S. Thomas, M. Zalbowitz, Fuel Cells-Green Power (Los Alamos National Laboratory, Los Alamos, New Mexico)
7.
Zurück zum Zitat F.A. Farret, M.G. Simoes, Power plants with fuel cells, in Integration of Alternative Sources of Energy (Wiley-IEEE Press, 2006), pp. 159–197 F.A. Farret, M.G. Simoes, Power plants with fuel cells, in Integration of Alternative Sources of Energy (Wiley-IEEE Press, 2006), pp. 159–197
8.
Zurück zum Zitat M.H. Nehrir, C. Wang, Principles of operation of fuel cells, in Modeling and Control of Fuel Cells: Distributed Generation Applications (Wiley-IEEE Press, 2009), pp. 29–56 M.H. Nehrir, C. Wang, Principles of operation of fuel cells, in Modeling and Control of Fuel Cells: Distributed Generation Applications (Wiley-IEEE Press, 2009), pp. 29–56
9.
Zurück zum Zitat P.J.H. Wingelaar, J.L. Duarte, M.A.M. Hendrix, Dynamic characteristics of PEM fuel cells, in IEEE 36th Power Electronics Specialists Conference (Recife, 2005), pp. 1635–1641 P.J.H. Wingelaar, J.L. Duarte, M.A.M. Hendrix, Dynamic characteristics of PEM fuel cells, in IEEE 36th Power Electronics Specialists Conference (Recife, 2005), pp. 1635–1641
10.
Zurück zum Zitat J. Snoussi, S.B. Elghali, M. Benbouzid, M.F. Mimouni, Optimal sizing of energy storage systems using frequency-separation-based energy management for fuel cell hybrid electric vehicles. IEEE Trans. Veh. Technol. 67(10), 9337–9346 (2018)CrossRef J. Snoussi, S.B. Elghali, M. Benbouzid, M.F. Mimouni, Optimal sizing of energy storage systems using frequency-separation-based energy management for fuel cell hybrid electric vehicles. IEEE Trans. Veh. Technol. 67(10), 9337–9346 (2018)CrossRef
11.
Zurück zum Zitat D. Zhou, A. AlDurra, I. Matraji, A. Ravey, F. Gao, Online energy management strategy of fuel cell hybrid electric vehicles: a fractional-order extremum seeking method. IEEE Trans. Industr. Electron. 65(8), 6787–6799 (2018)CrossRef D. Zhou, A. AlDurra, I. Matraji, A. Ravey, F. Gao, Online energy management strategy of fuel cell hybrid electric vehicles: a fractional-order extremum seeking method. IEEE Trans. Industr. Electron. 65(8), 6787–6799 (2018)CrossRef
12.
Zurück zum Zitat Y. Han, Q. Li, T. Wang, W. Chen, L. Ma, Multisource coordination energy management strategy based on SOC consensus for a PEMFC–battery–super capacitor hybrid tramway. IEEE Trans. Veh. Technol. 67(1), 296–305 (2018)CrossRef Y. Han, Q. Li, T. Wang, W. Chen, L. Ma, Multisource coordination energy management strategy based on SOC consensus for a PEMFC–battery–super capacitor hybrid tramway. IEEE Trans. Veh. Technol. 67(1), 296–305 (2018)CrossRef
13.
Zurück zum Zitat Q. Li, T. Wang, C. Dai, W. Chen, L. Ma, Power management strategy based on adaptive droop control for a fuel cell-battery-super capacitor hybrid tramway. IEEE Trans. Veh. Technol. 67(7), 5658–5670 (2018)CrossRef Q. Li, T. Wang, C. Dai, W. Chen, L. Ma, Power management strategy based on adaptive droop control for a fuel cell-battery-super capacitor hybrid tramway. IEEE Trans. Veh. Technol. 67(7), 5658–5670 (2018)CrossRef
14.
Zurück zum Zitat S.S. Yadav, K.S. Sandhu, A grid connected hybrid PV/fuel cell/battery using five level PWM inverter, in 2018 International Conference on Emerging Trends and Innovations In Engineering and Technological Research (ICETIETR) (Ernakulam, 2018), pp. 1–5 S.S. Yadav, K.S. Sandhu, A grid connected hybrid PV/fuel cell/battery using five level PWM inverter, in 2018 International Conference on Emerging Trends and Innovations In Engineering and Technological Research (ICETIETR) (Ernakulam, 2018), pp. 1–5
15.
Zurück zum Zitat A.S. Leger, A multidisciplinary undergraduate alternative energy engineering course. IEEE Trans. Educ. 62(1), 34–39 (2019)CrossRef A.S. Leger, A multidisciplinary undergraduate alternative energy engineering course. IEEE Trans. Educ. 62(1), 34–39 (2019)CrossRef
16.
Zurück zum Zitat S. Habib, M.M. Khan, F. Abbas, L. Sang, M.U. Shahid, H. Tang, A comprehensive study of implemented international standards, technical challenges, impacts and prospects for electric vehicles. IEEE Access 6(2), 13866–13890 (2018)CrossRef S. Habib, M.M. Khan, F. Abbas, L. Sang, M.U. Shahid, H. Tang, A comprehensive study of implemented international standards, technical challenges, impacts and prospects for electric vehicles. IEEE Access 6(2), 13866–13890 (2018)CrossRef
17.
Zurück zum Zitat D. Zhou, Y. Wu, F. Gao, E. Breaz, A. Ravey, A. Miraoui, Degradation prediction of PEM fuel cell stack based on multi physical aging model with particle filter approach. IEEE Trans. Ind. Appl. 53(4), 4041–4052 (2017)CrossRef D. Zhou, Y. Wu, F. Gao, E. Breaz, A. Ravey, A. Miraoui, Degradation prediction of PEM fuel cell stack based on multi physical aging model with particle filter approach. IEEE Trans. Ind. Appl. 53(4), 4041–4052 (2017)CrossRef
18.
Zurück zum Zitat C.R. Aguiar, G.H.F. Fuzato, R.F.Q. Magossi, R.V.A. Neves, R.Q. Machado, A new method to manage the fuel cell initialization. IEEE Trans. Ind. Appl. 54(5), 5187–5195 (2018)CrossRef C.R. Aguiar, G.H.F. Fuzato, R.F.Q. Magossi, R.V.A. Neves, R.Q. Machado, A new method to manage the fuel cell initialization. IEEE Trans. Ind. Appl. 54(5), 5187–5195 (2018)CrossRef
19.
Zurück zum Zitat P.J. Tritschler, E. Rullire, S. Bacha, Emulation of fuel cell systems, in The XIX International Conference on Electrical Machines—ICEM 2010 (Rome, 2010), pp. 1–5 P.J. Tritschler, E. Rullire, S. Bacha, Emulation of fuel cell systems, in The XIX International Conference on Electrical Machines—ICEM 2010 (Rome, 2010), pp. 1–5
20.
Zurück zum Zitat J.C.L. Haj, M.L. Agerskov, M.F. Jensen, P. Lading, Next generation range extension—2 glimpses of the future, in 2013 World Electric Vehicle Symposium and Exhibition (EVS27) (Barcelona, 2013), pp. 1–8 J.C.L. Haj, M.L. Agerskov, M.F. Jensen, P. Lading, Next generation range extension—2 glimpses of the future, in 2013 World Electric Vehicle Symposium and Exhibition (EVS27) (Barcelona, 2013), pp. 1–8
21.
Zurück zum Zitat J. Larminie, A. Dicks, Fuel Cell Systems Explained (Wiley, New York, 2000) J. Larminie, A. Dicks, Fuel Cell Systems Explained (Wiley, New York, 2000)
22.
Zurück zum Zitat D. Linden, T.B. Reddy, Battery Handbook (McGraw Hill Publisher, 2001) D. Linden, T.B. Reddy, Battery Handbook (McGraw Hill Publisher, 2001)
23.
Zurück zum Zitat L.E. Lesster, Fuel cell power electronics. Fuel Cells Bull. 3(25), 5–9 (2000)CrossRef L.E. Lesster, Fuel cell power electronics. Fuel Cells Bull. 3(25), 5–9 (2000)CrossRef
24.
Zurück zum Zitat R.W. Erickson, D. Maksimovic, Fundamentals of Power Electronics, 2nd edn. (Norwell, MA, USA, Kluwer, 2001)CrossRef R.W. Erickson, D. Maksimovic, Fundamentals of Power Electronics, 2nd edn. (Norwell, MA, USA, Kluwer, 2001)CrossRef
25.
Zurück zum Zitat M. Kabalo, B. Blunier, D. Bouquain, A. Miraoui, State-of-the-art of dc/dc converters for fuel cell vehicles, in IEEE Vehicle Power and Propulsion Conference (Lille, 2010), pp. 1–6 M. Kabalo, B. Blunier, D. Bouquain, A. Miraoui, State-of-the-art of dc/dc converters for fuel cell vehicles, in IEEE Vehicle Power and Propulsion Conference (Lille, 2010), pp. 1–6
27.
Zurück zum Zitat V.F. Pires, R.E. Cadaval, D.I. Roasto, J.F. Martins, Power converter interfaces for electrochemical energy storage systems—a review. Energy Convers. Manage. 86(2), 453–475 (2014)CrossRef V.F. Pires, R.E. Cadaval, D.I. Roasto, J.F. Martins, Power converter interfaces for electrochemical energy storage systems—a review. Energy Convers. Manage. 86(2), 453–475 (2014)CrossRef
28.
Zurück zum Zitat M.H. Todorovic, L. Palma, P. Enjeti, Design of a wide input range dc/dc converter with a robust power control scheme suitable for fuel cell power conversion, in Proceedings of Anaheim IEEE Application Power Electronics Conference and Exposition, pp. 374–379 M.H. Todorovic, L. Palma, P. Enjeti, Design of a wide input range dc/dc converter with a robust power control scheme suitable for fuel cell power conversion, in Proceedings of Anaheim IEEE Application Power Electronics Conference and Exposition, pp. 374–379
29.
Zurück zum Zitat H. Tarzamni, E. Babaei, A.Z. Gharehkoushan, M. Sabahi, Interleaved full ZVZCS dc/dc boost converter: analysis, design, reliability evaluations and experimental results. IET Power Electron. 10(7), 835–845 (2017)CrossRef H. Tarzamni, E. Babaei, A.Z. Gharehkoushan, M. Sabahi, Interleaved full ZVZCS dc/dc boost converter: analysis, design, reliability evaluations and experimental results. IET Power Electron. 10(7), 835–845 (2017)CrossRef
30.
Zurück zum Zitat O. Hegazy, J. Van Mierlo, P. Lataire, Analysis, control and implementation of a high-power interleaved boost converter for fuel cell hybrid electric vehicle. Int. Rev. Electr. Eng. 6(4), 1739–1747 (2011) O. Hegazy, J. Van Mierlo, P. Lataire, Analysis, control and implementation of a high-power interleaved boost converter for fuel cell hybrid electric vehicle. Int. Rev. Electr. Eng. 6(4), 1739–1747 (2011)
31.
Zurück zum Zitat J. Xie, X. Zhang, C. Zhang, C. Wang, Research on bidirectional dc/dc converter for a standalone photovoltaic hybrid energy storage system, in Asia-Pacific Power Energy Engineering Conference China (Chengdu, 2010), pp. 1–4 J. Xie, X. Zhang, C. Zhang, C. Wang, Research on bidirectional dc/dc converter for a standalone photovoltaic hybrid energy storage system, in Asia-Pacific Power Energy Engineering Conference China (Chengdu, 2010), pp. 1–4
32.
Zurück zum Zitat S. Malo, R. Grino, Design, construction, and control of a standalone energy-conditioning system for PEM-type fuel cells. IEEE Trans. Power Electron. 25(10), 2496–2506 (2010)CrossRef S. Malo, R. Grino, Design, construction, and control of a standalone energy-conditioning system for PEM-type fuel cells. IEEE Trans. Power Electron. 25(10), 2496–2506 (2010)CrossRef
33.
Zurück zum Zitat M.A. Abdullah, A.H.M. Yatim, C.W. Tan, A.S. Samosir, Control of a bidirectional converter to interface ultra-capacitor with renewable energy sources, in Proceedings of the IEEE International Conference on Industrial Technology (Cape Town, South Africa, 2013), pp. 673–678 M.A. Abdullah, A.H.M. Yatim, C.W. Tan, A.S. Samosir, Control of a bidirectional converter to interface ultra-capacitor with renewable energy sources, in Proceedings of the IEEE International Conference on Industrial Technology (Cape Town, South Africa, 2013), pp. 673–678
34.
Zurück zum Zitat V.M. Iyer, S. Gulur, S. Bhattacharya, Small-signal stability assessment and active stabilization of a bidirectional battery charger. IEEE Trans. Ind. Appl. 55(1), 563–574 (2019)CrossRef V.M. Iyer, S. Gulur, S. Bhattacharya, Small-signal stability assessment and active stabilization of a bidirectional battery charger. IEEE Trans. Ind. Appl. 55(1), 563–574 (2019)CrossRef
35.
Zurück zum Zitat A. Filba, S. Busquets, J. Nicolas, J. Bordonau, Operating principle and performance optimization of a three-level NPC dual-active-bridge dc/dc converter. IEEE Trans. Industr. Electron. 63(2), 678–690 (2016)CrossRef A. Filba, S. Busquets, J. Nicolas, J. Bordonau, Operating principle and performance optimization of a three-level NPC dual-active-bridge dc/dc converter. IEEE Trans. Industr. Electron. 63(2), 678–690 (2016)CrossRef
36.
Zurück zum Zitat B. Zhao, Q. Song, W. Liu, Power characterization of isolated bidirectional dual active bridge dc/dc converter with dual phase shift control. IEEE Trans. Power Electron. 27(9), 4172–4176 (2012)CrossRef B. Zhao, Q. Song, W. Liu, Power characterization of isolated bidirectional dual active bridge dc/dc converter with dual phase shift control. IEEE Trans. Power Electron. 27(9), 4172–4176 (2012)CrossRef
37.
Zurück zum Zitat H. Bai, C. Mi, Eliminate reactive power and increase system efficiency of isolated bidirectional dual active bridge dc/dc converters using novel dual phase shift control. IEEE Trans. Power Electron. 23(6), 2905–2914 (2008)CrossRef H. Bai, C. Mi, Eliminate reactive power and increase system efficiency of isolated bidirectional dual active bridge dc/dc converters using novel dual phase shift control. IEEE Trans. Power Electron. 23(6), 2905–2914 (2008)CrossRef
38.
Zurück zum Zitat S. Inoue, H. Akagi, A bidirectional isolated dc/dc converter as a core circuit of the next-generation medium voltage power conversion system. IEEE Trans. Power Electron. 22(2), 535–542 (2007)CrossRef S. Inoue, H. Akagi, A bidirectional isolated dc/dc converter as a core circuit of the next-generation medium voltage power conversion system. IEEE Trans. Power Electron. 22(2), 535–542 (2007)CrossRef
39.
Zurück zum Zitat H. Bai, C. Wang, S. Gargies, Operation, design and control of dual H-bridge based isolated bidirectional dc/dc converter. IET Power Electron. 1(4), 507–517 (2008)CrossRef H. Bai, C. Wang, S. Gargies, Operation, design and control of dual H-bridge based isolated bidirectional dc/dc converter. IET Power Electron. 1(4), 507–517 (2008)CrossRef
40.
Zurück zum Zitat D. Sha, F. You, X. Wang, A high efficiency current-fed semi dual active bridge dc/dc converter for low input voltage applications. IEEE Trans. Industr. Electron. 63(4), 2155–2164 (2016) D. Sha, F. You, X. Wang, A high efficiency current-fed semi dual active bridge dc/dc converter for low input voltage applications. IEEE Trans. Industr. Electron. 63(4), 2155–2164 (2016)
41.
Zurück zum Zitat F. Krismer, J. Biela, J.W. Kolar, A comparative evaluation of isolated bidirectional dc/dc converters with wide input and output voltage range, in Fourtieth IAS Annual Meeting. Conference Record of the 2005 Industry Applications Conference (Kowloon, 2005), pp. 599–606 F. Krismer, J. Biela, J.W. Kolar, A comparative evaluation of isolated bidirectional dc/dc converters with wide input and output voltage range, in Fourtieth IAS Annual Meeting. Conference Record of the 2005 Industry Applications Conference (Kowloon, 2005), pp. 599–606
42.
Zurück zum Zitat F. Krismer, J.W. Kolar, Efficiency optimized high current dual active bridge converter for automotive applications. IEEE Trans. Industr. Electron. 59(7), 2745–2760 (2012)CrossRef F. Krismer, J.W. Kolar, Efficiency optimized high current dual active bridge converter for automotive applications. IEEE Trans. Industr. Electron. 59(7), 2745–2760 (2012)CrossRef
Metadaten
Titel
Design and Modeling of Fuel Cell Hybrid Electric Vehicle for Urban Transportation
verfasst von
Mallikarjunareddy Bandi
Naveenkumar Marati
Balraj Vaithilingam
Kathirvel Karuppazhagi
Copyright-Jahr
2021
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-9251-5_1