Skip to main content

2019 | OriginalPaper | Buchkapitel

4. Design and Optimization of Wind-Battery Systems

verfasst von : Anindita Roy, Santanu Bandyopadhyay

Erschienen in: Wind Power Based Isolated Energy Systems

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter gives a detailed account of the sizing and optimization of an isolated wind-battery system. A procedure is proposed which simulates the minimum battery capacity given the resource and load profiles and generator rating-turbine diameter combination along with other system level constraints. Varying the turbine diameter-generator rating combinations enables to generate a set of feasible design options, known as the design space. The design space of a wind-battery system is identified on a rotor diameter vs. rated power diagram. This forms the core philosophy for sizing the system. The optimum configuration of the stand-alone system is identified on the basis of the minimum cost of energy. Similar results can also be obtained by applying principles of pinch analysis originally designed for optimizing heat exchanger networks. Multiple case studies are included to demonstrate the procedure. It is demonstrated that there are maximum and minimum limits associated with each design variable abiding by which it is possible to supply the demand.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Bekele, G., & Palm, B. (2010). Feasibility study for a standalone solar–wind-based hybrid energy system for application in Ethiopia. Applied Energy, 87(2), 487–495.CrossRef Bekele, G., & Palm, B. (2010). Feasibility study for a standalone solar–wind-based hybrid energy system for application in Ethiopia. Applied Energy, 87(2), 487–495.CrossRef
Zurück zum Zitat Beyer, H. G., & Degner, T. (1997). Assessing the maximum fuel savings obtainable in simple wind-diesel systems. Solar Energy, 61(1), 5–10.CrossRef Beyer, H. G., & Degner, T. (1997). Assessing the maximum fuel savings obtainable in simple wind-diesel systems. Solar Energy, 61(1), 5–10.CrossRef
Zurück zum Zitat Beyer, H. G., & Langer, C. (1996). A method for the identification of configurations of PV/wind hybrid systems for the reliable supply of small loads. Solar Energy, 57(5), 381–391.CrossRef Beyer, H. G., & Langer, C. (1996). A method for the identification of configurations of PV/wind hybrid systems for the reliable supply of small loads. Solar Energy, 57(5), 381–391.CrossRef
Zurück zum Zitat Beyer, H. G., Degner, T., & Gabler, H. (1995). Operational behaviour of wind-diesel systems incorporating short-term storage: An analysis via simulation calculations. Solar Energy, 54(6), 429–439.CrossRef Beyer, H. G., Degner, T., & Gabler, H. (1995). Operational behaviour of wind-diesel systems incorporating short-term storage: An analysis via simulation calculations. Solar Energy, 54(6), 429–439.CrossRef
Zurück zum Zitat Borowy, B. S., & Salameh, Z. M. (1994). Optimum photovoltaic array size for a hybrid wind/PV system. IEEE Transactions on Energy Conversion, 9(3), 482–488.CrossRef Borowy, B. S., & Salameh, Z. M. (1994). Optimum photovoltaic array size for a hybrid wind/PV system. IEEE Transactions on Energy Conversion, 9(3), 482–488.CrossRef
Zurück zum Zitat Borowy, B. S., & Salameh, Z. M. (1997). Dynamic response of a stand-alone wind energy conversion system with battery energy storage to a wind gust. IEEE Transactions on Energy Conversion, 12(1), 73-78.CrossRef Borowy, B. S., & Salameh, Z. M. (1997). Dynamic response of a stand-alone wind energy conversion system with battery energy storage to a wind gust. IEEE Transactions on Energy Conversion, 12(1), 73-78.CrossRef
Zurück zum Zitat Celik, A. N. (2003). A simplified model for estimating the monthly performance of autonomous wind energy systems with battery storage. Renewable Energy, 28(4), 561–572.MathSciNetCrossRef Celik, A. N. (2003). A simplified model for estimating the monthly performance of autonomous wind energy systems with battery storage. Renewable Energy, 28(4), 561–572.MathSciNetCrossRef
Zurück zum Zitat Chedid, R., & Rahman, S.(1997). Unit sizing and control of hybrid wind-solar power systems. IEEE Transactions on Energy Conversion, 12(1),79-85.CrossRef Chedid, R., & Rahman, S.(1997). Unit sizing and control of hybrid wind-solar power systems. IEEE Transactions on Energy Conversion, 12(1),79-85.CrossRef
Zurück zum Zitat Collecutt, G. R., & Flay, R. G. J. (1996). The economic optimization of horizontal axis wind turbine design. Journal of Wind Engineering and Industrial Aerodynamics, 61(1), 87–97.CrossRef Collecutt, G. R., & Flay, R. G. J. (1996). The economic optimization of horizontal axis wind turbine design. Journal of Wind Engineering and Industrial Aerodynamics, 61(1), 87–97.CrossRef
Zurück zum Zitat De, L., & Musgrove, A. R. (1988). The optimization of hybrid energy conversion systems using the dynamic programming model-Rapsody. International Journal of Energy Research, 12(3), 447–457.CrossRef De, L., & Musgrove, A. R. (1988). The optimization of hybrid energy conversion systems using the dynamic programming model-Rapsody. International Journal of Energy Research, 12(3), 447–457.CrossRef
Zurück zum Zitat Dunnett, S., Khennas, S., & Piggott, H. (2001). Small wind systems for battery charging – A guide for development workers. Department for International Development. Dunnett, S., Khennas, S., & Piggott, H. (2001). Small wind systems for battery charging – A guide for development workers. Department for International Development.
Zurück zum Zitat Ekren, O., & Ekren, B. Y. (2008). Size optimization of a PV/wind hybrid energy conversion system with battery storage using response surface methodology. Applied Energy, 87(11), 1086–1101.CrossRef Ekren, O., & Ekren, B. Y. (2008). Size optimization of a PV/wind hybrid energy conversion system with battery storage using response surface methodology. Applied Energy, 87(11), 1086–1101.CrossRef
Zurück zum Zitat Ekren O., Ekren B.Y. (2010) Size optimization of a PV/wind hybrid energy conversion system with battery storage using simulated annealing. Applied Energy, 87(2), 592–598.CrossRef Ekren O., Ekren B.Y. (2010) Size optimization of a PV/wind hybrid energy conversion system with battery storage using simulated annealing. Applied Energy, 87(2), 592–598.CrossRef
Zurück zum Zitat Elhadidy, M. A., & Shaahid, S. M. (1999). Optimal sizing of battery storage for hybrid (wind+diesel) power systems. Renewable Energy, 18(1), 77–86.CrossRef Elhadidy, M. A., & Shaahid, S. M. (1999). Optimal sizing of battery storage for hybrid (wind+diesel) power systems. Renewable Energy, 18(1), 77–86.CrossRef
Zurück zum Zitat Galanis, N., & Christophides, C. (1990). Technical and economic considerations for the design of optimum wind energy conversion systems. Journal of Wind Engineering and Industrial Aerodynamics, 34(2), 185–196.CrossRef Galanis, N., & Christophides, C. (1990). Technical and economic considerations for the design of optimum wind energy conversion systems. Journal of Wind Engineering and Industrial Aerodynamics, 34(2), 185–196.CrossRef
Zurück zum Zitat Honkalaskar, V. (2006). Design and development of a small wind turbine. Department of Mechanical Engineering, DD Project Report, IIT Bombay. Honkalaskar, V. (2006). Design and development of a small wind turbine. Department of Mechanical Engineering, DD Project Report, IIT Bombay.
Zurück zum Zitat Kaldellis, J. K. (2004). Parametric investigation concerning dimensions of a stand-alone wind-power system. Applied Energy, 77(1), 35–50.CrossRef Kaldellis, J. K. (2004). Parametric investigation concerning dimensions of a stand-alone wind-power system. Applied Energy, 77(1), 35–50.CrossRef
Zurück zum Zitat Kaldellis, J. K., Kondili, E., & Filios, A. (2006). Sizing a hybrid wind-diesel stand-alone system on the basis of minimum long-term electricity production cost. Applied Energy, 83(12), 1384–1403.CrossRef Kaldellis, J. K., Kondili, E., & Filios, A. (2006). Sizing a hybrid wind-diesel stand-alone system on the basis of minimum long-term electricity production cost. Applied Energy, 83(12), 1384–1403.CrossRef
Zurück zum Zitat Katti, P. K., & Khedkar, M. K. (2007). Alternative energy facilities based on site matching and generation unit sizing for remote area power supply. Renewable Energy, 32(8), 1346–1362.CrossRef Katti, P. K., & Khedkar, M. K. (2007). Alternative energy facilities based on site matching and generation unit sizing for remote area power supply. Renewable Energy, 32(8), 1346–1362.CrossRef
Zurück zum Zitat Kellogg, W., Nehrir, M. H., Venkataramanan, G., & Gerez, V. (1998). Generation unit sizing and cost analysis for stand-alone wind, photovoltaic, and hybrid wind/PV systems. IEEE Transactions on Energy Conversion, 13(1), 70–75.CrossRef Kellogg, W., Nehrir, M. H., Venkataramanan, G., & Gerez, V. (1998). Generation unit sizing and cost analysis for stand-alone wind, photovoltaic, and hybrid wind/PV systems. IEEE Transactions on Energy Conversion, 13(1), 70–75.CrossRef
Zurück zum Zitat Koutroulis, E., Kolokotsa, D., Potirakis, A., & Kalaitzakis, K. (2006). Methodology for optimal sizing of stand-alone photovoltaic/wind-generator systems using genetic algorithms. Solar Energy, 80(9), 1072–1088.CrossRef Koutroulis, E., Kolokotsa, D., Potirakis, A., & Kalaitzakis, K. (2006). Methodology for optimal sizing of stand-alone photovoltaic/wind-generator systems using genetic algorithms. Solar Energy, 80(9), 1072–1088.CrossRef
Zurück zum Zitat Manwell, J. F., & McGowan, J. G. (1994). A combined probabilistic/ time series model for wind-diesel system simulation. Solar Energy, 53(6), 481–490.CrossRef Manwell, J. F., & McGowan, J. G. (1994). A combined probabilistic/ time series model for wind-diesel system simulation. Solar Energy, 53(6), 481–490.CrossRef
Zurück zum Zitat Manwell, J. F., McGowan, J. G., & Rogers, A. L. (2002). Wind energy explained: Theory design and application. Chichester: John Wiley.CrossRef Manwell, J. F., McGowan, J. G., & Rogers, A. L. (2002). Wind energy explained: Theory design and application. Chichester: John Wiley.CrossRef
Zurück zum Zitat Markvart, T. (1996). Sizing of hybrid-photovoltaic-wind energy systems. Solar Energy, 57(4), 227–281.CrossRef Markvart, T. (1996). Sizing of hybrid-photovoltaic-wind energy systems. Solar Energy, 57(4), 227–281.CrossRef
Zurück zum Zitat Muselli, M., Notton, G., & Louche, L. (1998). Design of Hybrid-photovoltaic power generator, with optimization of energy management. Solar Energy, 65(3), 143–157.CrossRef Muselli, M., Notton, G., & Louche, L. (1998). Design of Hybrid-photovoltaic power generator, with optimization of energy management. Solar Energy, 65(3), 143–157.CrossRef
Zurück zum Zitat Nfaoui, H., Buret, J., Sayigh, A. A. M., & Dunn, P. D. (1994). Modelling of a wind/diesel system with battery storage for Tangiers, Morocco. Renewable Energy, 4(2), 155–167.CrossRef Nfaoui, H., Buret, J., Sayigh, A. A. M., & Dunn, P. D. (1994). Modelling of a wind/diesel system with battery storage for Tangiers, Morocco. Renewable Energy, 4(2), 155–167.CrossRef
Zurück zum Zitat Nouni, M. R., Mullick, S. C., & Kandpal, T. C. (2007). Techno-economics of small wind electric generator projects for decentralized power supply in India. Energy Policy, 34(4), 2491–2506.CrossRef Nouni, M. R., Mullick, S. C., & Kandpal, T. C. (2007). Techno-economics of small wind electric generator projects for decentralized power supply in India. Energy Policy, 34(4), 2491–2506.CrossRef
Zurück zum Zitat Protogeropoulos, C., Brinkworth, B. J., & Marshall, R. H. (1997). Sizing and techno-economical optimization for solar photovoltaic/wind power systems with battery storage. International Journal of Energy Research, 21(6), 465–479.CrossRef Protogeropoulos, C., Brinkworth, B. J., & Marshall, R. H. (1997). Sizing and techno-economical optimization for solar photovoltaic/wind power systems with battery storage. International Journal of Energy Research, 21(6), 465–479.CrossRef
Zurück zum Zitat Roy, A., Kedare, S. B., & Bandyopadhyay, S. (2009). Application of design space methodology for optimum sizing of wind–battery systems. Applied Energy, 86(12), 2690–2703.CrossRef Roy, A., Kedare, S. B., & Bandyopadhyay, S. (2009). Application of design space methodology for optimum sizing of wind–battery systems. Applied Energy, 86(12), 2690–2703.CrossRef
Zurück zum Zitat Rydh, C. J. (1999). Environmental assessment of vanadium redox and lead-acid batteries for stationary energy storage. Journal of Power Sources, 80(1–2), 21–29.CrossRef Rydh, C. J. (1999). Environmental assessment of vanadium redox and lead-acid batteries for stationary energy storage. Journal of Power Sources, 80(1–2), 21–29.CrossRef
Zurück zum Zitat Sagrillo, M. (2005). Siting towers and heights for small wind turbines. Wind Letter, 24(10), 1–2. Sagrillo, M. (2005). Siting towers and heights for small wind turbines. Wind Letter, 24(10), 1–2.
Zurück zum Zitat Shi, J. H., Zhu, X. J., & Cao, G. Y. (2007). Design and techno-economical optimization for stand-alone hybrid power systems with multi-objective evolutionary algorithms. International Journal of Energy Research, 31(3), 315–328.CrossRef Shi, J. H., Zhu, X. J., & Cao, G. Y. (2007). Design and techno-economical optimization for stand-alone hybrid power systems with multi-objective evolutionary algorithms. International Journal of Energy Research, 31(3), 315–328.CrossRef
Zurück zum Zitat Yang, H., Lu, L., & Zhou, W. (2007). A novel optimization sizing model for hybrid solar-wind power generation system. Solar Energy, 81(1), 76–84.CrossRef Yang, H., Lu, L., & Zhou, W. (2007). A novel optimization sizing model for hybrid solar-wind power generation system. Solar Energy, 81(1), 76–84.CrossRef
Metadaten
Titel
Design and Optimization of Wind-Battery Systems
verfasst von
Anindita Roy
Santanu Bandyopadhyay
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-030-00542-9_4