Skip to main content
Erschienen in: Biomass Conversion and Biorefinery 3/2013

01.09.2013 | Original Article

Design and simulation of an organosolv process for bioethanol production

verfasst von: Jesse Kautto, Matthew J. Realff, Arthur J. Ragauskas

Erschienen in: Biomass Conversion and Biorefinery | Ausgabe 3/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Organosolv pulping can be used as a pretreatment step in bioethanol production. In addition to ethanol, organosolv pulping allows for the production of a pure lignin product and other co-products. Based on publicly available information, conceptual process design and simulation model were developed for an organosolv process. The simulation model was used to calculate the mass and energy balances and approximate fossil-based carbon dioxide (CO2) emissions for the process. With a hardwood feed of 2,350 dry metric tons (MT) per day, 459 MT/day (53.9 million gallons per year) of ethanol was produced. This corresponded to a carbohydrate to ethanol conversion of 64 %. The production rates of lignin, furfural, and acetic acid were 310, 6.6, and 30.3 MT/day, respectively. The energy balance indicated that the process was not energy self-sufficient. In addition to bark and organic residues combusted to produce energy, external fuel (natural gas) was needed to cover the steam demand. This was largely due to the energy consumed in recovering the solvent. Compared to a dilute acid bioethanol process, the organosolv process was estimated to consume 34 % more energy. Allocating all emissions from natural gas combustion to the produced ethanol led to fossil CO2 emissions of 13.5 g per megajoule (MJ) of ethanol. The total fossil CO2 emissions of the process, including also feedstock transportation and other less significant emission sources, would almost certainly not exceed the US Renewable Fuel Standard threshold limit (36.5 g CO2/MJ ethanol).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Hamelinck CN, van Hooijdonk G, Faaij APC (2005) Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long term. Biomass Bioenergy 28:384–410CrossRef Hamelinck CN, van Hooijdonk G, Faaij APC (2005) Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long term. Biomass Bioenergy 28:384–410CrossRef
2.
Zurück zum Zitat Kamm B, Kamm M (2004) Principles of biorefineries. Appl Microbiol Biotechnol 64:137–145CrossRef Kamm B, Kamm M (2004) Principles of biorefineries. Appl Microbiol Biotechnol 64:137–145CrossRef
4.
Zurück zum Zitat Himmel ME, Ding S-H, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804–807CrossRef Himmel ME, Ding S-H, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804–807CrossRef
5.
Zurück zum Zitat Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686CrossRef Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686CrossRef
6.
Zurück zum Zitat Zheng Y, Pan Z, Zhang R (2009) Overview of biomass pretreatment for cellulosic ethanol production. Int J Agric Biol Eng 2:51–68 Zheng Y, Pan Z, Zhang R (2009) Overview of biomass pretreatment for cellulosic ethanol production. Int J Agric Biol Eng 2:51–68
7.
Zurück zum Zitat Aziz S, Sarkanen K (1989) Organosolv pulping—a review. Tappi J 72:169–175 Aziz S, Sarkanen K (1989) Organosolv pulping—a review. Tappi J 72:169–175
8.
Zurück zum Zitat Hergert HL (1998) Developments in organosolv pulping—an overview. In: Young RA, Akhtar M (eds) Environmentally friendly technologies for the pulp and paper industry. Wiley, New York, pp 5–67 Hergert HL (1998) Developments in organosolv pulping—an overview. In: Young RA, Akhtar M (eds) Environmentally friendly technologies for the pulp and paper industry. Wiley, New York, pp 5–67
9.
Zurück zum Zitat Pan X, Arato C, Gilkes N, Gregg D, Mabee W, Pye K, Xiao Z, Zhang X, Saddler J (2005) Biorefining of softwoods using ethanol organosolv pulping: preliminary evaluation of process streams for manufacture of fuel-grade ethanol and co-products. Biotechnol Bioeng 90:473–481CrossRef Pan X, Arato C, Gilkes N, Gregg D, Mabee W, Pye K, Xiao Z, Zhang X, Saddler J (2005) Biorefining of softwoods using ethanol organosolv pulping: preliminary evaluation of process streams for manufacture of fuel-grade ethanol and co-products. Biotechnol Bioeng 90:473–481CrossRef
10.
Zurück zum Zitat Pan X, Gilkes N, Kadla J, Pye K, Saka S, Gregg D, Ehara K, Xie D, Lam D, Saddler J (2006) Bioconversion of hybrid poplar to ethanol and co-products using an organosolv fractionation process: optimization of process yields. Biotechnol Bioeng 94:851–861CrossRef Pan X, Gilkes N, Kadla J, Pye K, Saka S, Gregg D, Ehara K, Xie D, Lam D, Saddler J (2006) Bioconversion of hybrid poplar to ethanol and co-products using an organosolv fractionation process: optimization of process yields. Biotechnol Bioeng 94:851–861CrossRef
11.
Zurück zum Zitat Zhao X, Cheng K, Liu D (2009) Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Appl Microbiol Biotechnol 82:815–827CrossRef Zhao X, Cheng K, Liu D (2009) Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Appl Microbiol Biotechnol 82:815–827CrossRef
12.
Zurück zum Zitat Muurinen E (2000) Organosolv pulping. A review and distillation study related to peroxyacid pulping. Dissertation, University of Oulu Muurinen E (2000) Organosolv pulping. A review and distillation study related to peroxyacid pulping. Dissertation, University of Oulu
13.
Zurück zum Zitat McDonough TJ (1993) The chemistry of organosolv delignification. Tappi J 76:186–193 McDonough TJ (1993) The chemistry of organosolv delignification. Tappi J 76:186–193
14.
Zurück zum Zitat Sannigrahi P, Ragauskas AJ, Miller SJ (2010) Lignin structural modifications resulting from ethanol organosolv treatment of loblolly pine. Energy Fuel 24:683–689CrossRef Sannigrahi P, Ragauskas AJ, Miller SJ (2010) Lignin structural modifications resulting from ethanol organosolv treatment of loblolly pine. Energy Fuel 24:683–689CrossRef
15.
Zurück zum Zitat Lora JH, Glasser WG (2002) Recent industrial applications of lignin: a sustainable alternative to nonrenewable materials. J Polym Environ 10:39–48CrossRef Lora JH, Glasser WG (2002) Recent industrial applications of lignin: a sustainable alternative to nonrenewable materials. J Polym Environ 10:39–48CrossRef
16.
Zurück zum Zitat Stewart D (2008) Lignin as a base material for materials applications: chemistry, application and economics. Ind Crops Prod 27:202–207CrossRef Stewart D (2008) Lignin as a base material for materials applications: chemistry, application and economics. Ind Crops Prod 27:202–207CrossRef
17.
Zurück zum Zitat Arato C, Pye EK, Gjennestad G (2005) The Lignol approach to biorefining of woody biomass to produce ethanol and chemicals. Appl Biochem Biotechnol 121–124:871–882CrossRef Arato C, Pye EK, Gjennestad G (2005) The Lignol approach to biorefining of woody biomass to produce ethanol and chemicals. Appl Biochem Biotechnol 121–124:871–882CrossRef
18.
Zurück zum Zitat Pan X, Xie D, Yu RW, Lam D, Saddler JN (2007) Pretreatment of lodgepole pine killed by mountain pine beetle using the ethanol organosolv process: fractionation and process optimization. Ind Eng Chem Res 46:2609–2617CrossRef Pan X, Xie D, Yu RW, Lam D, Saddler JN (2007) Pretreatment of lodgepole pine killed by mountain pine beetle using the ethanol organosolv process: fractionation and process optimization. Ind Eng Chem Res 46:2609–2617CrossRef
19.
Zurück zum Zitat Pan X, Xie D, Yu RW, Saddler JN (2008) The bioconversion of mountain pine beetle-killed lodgepole pine to fuel ethanol using the organosolv process. Biotechnol Bioeng 101:39–48CrossRef Pan X, Xie D, Yu RW, Saddler JN (2008) The bioconversion of mountain pine beetle-killed lodgepole pine to fuel ethanol using the organosolv process. Biotechnol Bioeng 101:39–48CrossRef
20.
Zurück zum Zitat Brosse N, Sannigrahi P, Ragauskas A (2009) Pretreatment of Mischanthus x giganteus using the ethanol organosolv process for ethanol production. Ind Eng Chem Res 48:8328–8334CrossRef Brosse N, Sannigrahi P, Ragauskas A (2009) Pretreatment of Mischanthus x giganteus using the ethanol organosolv process for ethanol production. Ind Eng Chem Res 48:8328–8334CrossRef
21.
Zurück zum Zitat Hallac BB, Sannigrahi P, Pu Y, Ray M, Murphy RJ, Ragauskas AJ (2010) Effect of ethanol organosolv pretreatment on enzymatic hydrolysis of Buddleja davidii stem biomass. Ind Eng Chem Res 49:1467–1472CrossRef Hallac BB, Sannigrahi P, Pu Y, Ray M, Murphy RJ, Ragauskas AJ (2010) Effect of ethanol organosolv pretreatment on enzymatic hydrolysis of Buddleja davidii stem biomass. Ind Eng Chem Res 49:1467–1472CrossRef
22.
Zurück zum Zitat Mesa L, González E, Cara C, Ruiz E, Castro E, Mussatto SI (2010) An approach to optimization of enzymatic hydrolysis from sugarcane bagasse based on organosolv pretreatment. J Chem Technol Biotechnol 85:1092–1098CrossRef Mesa L, González E, Cara C, Ruiz E, Castro E, Mussatto SI (2010) An approach to optimization of enzymatic hydrolysis from sugarcane bagasse based on organosolv pretreatment. J Chem Technol Biotechnol 85:1092–1098CrossRef
23.
Zurück zum Zitat Park N, Kim H-Y, Koo B-W, Yeo H, Choi I-G (2010) Organosolv pretreatment with various catalysts for enhancing enzymatic pretreatment of pitch pine (Pinus rigida). Bioresour Technol 101:7046–7053CrossRef Park N, Kim H-Y, Koo B-W, Yeo H, Choi I-G (2010) Organosolv pretreatment with various catalysts for enhancing enzymatic pretreatment of pitch pine (Pinus rigida). Bioresour Technol 101:7046–7053CrossRef
24.
Zurück zum Zitat Cateto C, Hu G, Ragauskas A (2011) Enzymatic hydrolysis of organosolv Kanlow switchgrass and its impact on cellulose crystallinity and degree of polymerization. Energy Environ Sci 4:1516–1521CrossRef Cateto C, Hu G, Ragauskas A (2011) Enzymatic hydrolysis of organosolv Kanlow switchgrass and its impact on cellulose crystallinity and degree of polymerization. Energy Environ Sci 4:1516–1521CrossRef
25.
Zurück zum Zitat Del Rio LF, Chandra RP, Saddler JN (2012) Fibre size does not appear to influence the ease of enzymatic hydrolysis of organosolv-pretreated softwoods. Bioresour Technol 107:235–242CrossRef Del Rio LF, Chandra RP, Saddler JN (2012) Fibre size does not appear to influence the ease of enzymatic hydrolysis of organosolv-pretreated softwoods. Bioresour Technol 107:235–242CrossRef
26.
Zurück zum Zitat Hu G, Cateto C, Pu Y, Samuel R, Ragauskas AJ (2012) Stuctural characterization of switchgrass lignin after ethanol organosolv pretreatment. Energy Fuel 26:740–745CrossRef Hu G, Cateto C, Pu Y, Samuel R, Ragauskas AJ (2012) Stuctural characterization of switchgrass lignin after ethanol organosolv pretreatment. Energy Fuel 26:740–745CrossRef
27.
Zurück zum Zitat Furlan FF, Costa CBB, de Fonseca CG, de Soares PR, Secchi AR, da Cruz AJG, de Giordano CR (2012) Assessing the production of first and second generation bioethanol from sugarcane through the integration of global optimization and process detailed modeling. Comput Chem Eng 43:19CrossRef Furlan FF, Costa CBB, de Fonseca CG, de Soares PR, Secchi AR, da Cruz AJG, de Giordano CR (2012) Assessing the production of first and second generation bioethanol from sugarcane through the integration of global optimization and process detailed modeling. Comput Chem Eng 43:19CrossRef
28.
Zurück zum Zitat Dias MOS, Pereira da Cunha M, Maciel Filho R, Bonomi A, Jesus CDF, Rossell CEV (2011) Simulation of integrated first and second generation bioethanol production from sugarcane: comparison between different biomass pretreatment methods. J Ind Microbiol Biotechnol 38:955–966CrossRef Dias MOS, Pereira da Cunha M, Maciel Filho R, Bonomi A, Jesus CDF, Rossell CEV (2011) Simulation of integrated first and second generation bioethanol production from sugarcane: comparison between different biomass pretreatment methods. J Ind Microbiol Biotechnol 38:955–966CrossRef
29.
Zurück zum Zitat Ojeda K, Ávila O, Suárez J, Kafarov V (2011) Evaluation of technological alternatives for process integration of sugarcane bagasse for sustainable biofuels production—part 1. Chem Eng Res Des 89:270–279CrossRef Ojeda K, Ávila O, Suárez J, Kafarov V (2011) Evaluation of technological alternatives for process integration of sugarcane bagasse for sustainable biofuels production—part 1. Chem Eng Res Des 89:270–279CrossRef
30.
Zurück zum Zitat García A, González Alriols M, Llano-Ponte R, Labidi J (2011) Energy and economic assessment of soda and organosolv biorefinery processes. Biomass Bioenergy 35:516–525CrossRef García A, González Alriols M, Llano-Ponte R, Labidi J (2011) Energy and economic assessment of soda and organosolv biorefinery processes. Biomass Bioenergy 35:516–525CrossRef
31.
Zurück zum Zitat Zhu JY, Pan XJ (2010) Woody biomass pretreatment for cellulosic ethanol production: technology and energy consumption evaluation. Bioresour Technol 101:4992–5002CrossRef Zhu JY, Pan XJ (2010) Woody biomass pretreatment for cellulosic ethanol production: technology and energy consumption evaluation. Bioresour Technol 101:4992–5002CrossRef
32.
Zurück zum Zitat Vila C, Santos V, Parajó JC (2003) Simulation of an organosolv pulping process: generalized material balances and design calculations. Ind Eng Chem Res 42:349–356CrossRef Vila C, Santos V, Parajó JC (2003) Simulation of an organosolv pulping process: generalized material balances and design calculations. Ind Eng Chem Res 42:349–356CrossRef
33.
Zurück zum Zitat Botello JI, Gilarranz MA, Rodríguez F, Oliet M (1999) Recovery of solvent and by-products from organosolv black liquor. Sep Sci Technol 34:2431–2445CrossRef Botello JI, Gilarranz MA, Rodríguez F, Oliet M (1999) Recovery of solvent and by-products from organosolv black liquor. Sep Sci Technol 34:2431–2445CrossRef
34.
Zurück zum Zitat Parajó JC, Santos V (1995) Preliminary evaluation of acetic acid-based processes for wood utilization. Holz Roh Werkst 53:347–353CrossRef Parajó JC, Santos V (1995) Preliminary evaluation of acetic acid-based processes for wood utilization. Holz Roh Werkst 53:347–353CrossRef
35.
Zurück zum Zitat Li M-F, Sun S-N, Xu F, Sun R-C (2012) Organosolv fractionation of lignocelluloses for fuels, chemicals and materials: a biorefinery processing perspective. In: Baskar C, Baskar S, Dhillon RS (eds) Biomass conversion: the interface of biotechnology, chemistry and materials science. Springer, Berlin, pp 341–379CrossRef Li M-F, Sun S-N, Xu F, Sun R-C (2012) Organosolv fractionation of lignocelluloses for fuels, chemicals and materials: a biorefinery processing perspective. In: Baskar C, Baskar S, Dhillon RS (eds) Biomass conversion: the interface of biotechnology, chemistry and materials science. Springer, Berlin, pp 341–379CrossRef
36.
Zurück zum Zitat Humbird D, Davis R, Tao L, Kinchin C, Hsu D, Aden A, Schoen P, Lukas J, Olthof B, Worley M, Sexton D, Dudgeon D (2011) Process design and economics for biochemical conversion of lignocellulosic biomass to ethanol. National Renewable Energy Laboratory technical report NREL/TP-5100-47764, Colorado Humbird D, Davis R, Tao L, Kinchin C, Hsu D, Aden A, Schoen P, Lukas J, Olthof B, Worley M, Sexton D, Dudgeon D (2011) Process design and economics for biochemical conversion of lignocellulosic biomass to ethanol. National Renewable Energy Laboratory technical report NREL/TP-5100-47764, Colorado
37.
Zurück zum Zitat AspenTech (2011) Aspen Plus™ 7.1. software. Aspen Technology, Inc, Massachusetts AspenTech (2011) Aspen Plus 7.1. software. Aspen Technology, Inc, Massachusetts
38.
Zurück zum Zitat Agar RC, Lora JH, Cronlund M, Wu CF, Goyal GC, Winner SR, Raskin MN, Katzen R, LeBlanc R (1998) Method of recovering furfural from organic pulping liquor. US Patent 5,788,812 Agar RC, Lora JH, Cronlund M, Wu CF, Goyal GC, Winner SR, Raskin MN, Katzen R, LeBlanc R (1998) Method of recovering furfural from organic pulping liquor. US Patent 5,788,812
39.
Zurück zum Zitat Goyal GC, Lora JH, Pye EK (1992) Autocatalyzed organosolv pulping of hardwoods: effect of pulping conditions on pulp properties and characteristics of soluble and residual lignin. Tappi J 75:110–116 Goyal GC, Lora JH, Pye EK (1992) Autocatalyzed organosolv pulping of hardwoods: effect of pulping conditions on pulp properties and characteristics of soluble and residual lignin. Tappi J 75:110–116
40.
Zurück zum Zitat Sannigrahi P, Ragauskas AJ, Tuskan GA (2009) Poplar as a feedstock for biofuels: a review of compositional characteristics. Biofuels, Bioprod Biorefin 4:209–226CrossRef Sannigrahi P, Ragauskas AJ, Tuskan GA (2009) Poplar as a feedstock for biofuels: a review of compositional characteristics. Biofuels, Bioprod Biorefin 4:209–226CrossRef
41.
Zurück zum Zitat Garrote G, Domínguez H, Parajó JC (2001) Generation of xylose solutions from Eucalyptus globulus wood by autohydrolysis-posthydrolysis processes: posthydrolysis kinetics. Bioresour Technol 79:155–164CrossRef Garrote G, Domínguez H, Parajó JC (2001) Generation of xylose solutions from Eucalyptus globulus wood by autohydrolysis-posthydrolysis processes: posthydrolysis kinetics. Bioresour Technol 79:155–164CrossRef
42.
Zurück zum Zitat Ni H, Hu Q (1995) Alcell® lignin solubility in ethanol–water mixtures. J Appl Polym Sci 57:1441–1446CrossRef Ni H, Hu Q (1995) Alcell® lignin solubility in ethanol–water mixtures. J Appl Polym Sci 57:1441–1446CrossRef
43.
Zurück zum Zitat Macfarlane AL, Prestidge R, Farid MM, Chen JJJ (2009) Dissolved air flotation: a novel approach to recovery of organosolv lignin. Chem Eng J 148:15–19CrossRef Macfarlane AL, Prestidge R, Farid MM, Chen JJJ (2009) Dissolved air flotation: a novel approach to recovery of organosolv lignin. Chem Eng J 148:15–19CrossRef
44.
Zurück zum Zitat Hallberg C, O'Connor D, Rushton M, Pye EK., Gjennestad G (2011) Continuous counter-current organosolv processing of lignocellulosic feedstocks. Canadian patent 2597135 Hallberg C, O'Connor D, Rushton M, Pye EK., Gjennestad G (2011) Continuous counter-current organosolv processing of lignocellulosic feedstocks. Canadian patent 2597135
45.
Zurück zum Zitat Palmqvist E, Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresour Technol 74:25–33CrossRef Palmqvist E, Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresour Technol 74:25–33CrossRef
46.
Zurück zum Zitat Mussatto SI, Roberto IC (2004) Alternatives for detoxification of dilute-acid lignocellulosic hydrolyzates for use in fermentative processes: a review. Bioresour Technol 93:1–10CrossRef Mussatto SI, Roberto IC (2004) Alternatives for detoxification of dilute-acid lignocellulosic hydrolyzates for use in fermentative processes: a review. Bioresour Technol 93:1–10CrossRef
47.
Zurück zum Zitat Kanzler W, Schedler J (1983) Method for the recovery of furfural, acetic acid and formic acid. US Patent 4:401,514 Kanzler W, Schedler J (1983) Method for the recovery of furfural, acetic acid and formic acid. US Patent 4:401,514
48.
Zurück zum Zitat Wardell JM, King CJ (1978) Solvent equilibria for extraction of carboxylix acids from water. J Chem Eng Data 23:144–148CrossRef Wardell JM, King CJ (1978) Solvent equilibria for extraction of carboxylix acids from water. J Chem Eng Data 23:144–148CrossRef
49.
Zurück zum Zitat Golob J, Grlic V, Zadnik B (1981) Extraction of acetic acid from dilute aqueous solutions with trioctylphosphine oxide. Ind Eng Chem Process Des Dev 20:433–435CrossRef Golob J, Grlic V, Zadnik B (1981) Extraction of acetic acid from dilute aqueous solutions with trioctylphosphine oxide. Ind Eng Chem Process Des Dev 20:433–435CrossRef
50.
Zurück zum Zitat Fogelholm C-J, Suutela J (1999) Heat and power co-generation. In: Gullichsen J, Fogelholm C-J (eds) Papermaking science and technology, chemical pulping, book 6B, 1st edn. Fapet Oy, Finland, pp 303–337 Fogelholm C-J, Suutela J (1999) Heat and power co-generation. In: Gullichsen J, Fogelholm C-J (eds) Papermaking science and technology, chemical pulping, book 6B, 1st edn. Fapet Oy, Finland, pp 303–337
51.
Zurück zum Zitat Jaramillo P, Griffin WM, Matthews HS (2007) Comparative life-cycle air emissions of coal, domestic natural gas, LNG, and SNG for electricity generation. Environ Sci Technol 41:6290–6296CrossRef Jaramillo P, Griffin WM, Matthews HS (2007) Comparative life-cycle air emissions of coal, domestic natural gas, LNG, and SNG for electricity generation. Environ Sci Technol 41:6290–6296CrossRef
54.
Zurück zum Zitat Slade R, Bauen A, Shah N (2009) The greenhouse gas emissions performance of cellulosic ethanol supply chains in Europe. Biotechnol Biofuels 2:1–19CrossRef Slade R, Bauen A, Shah N (2009) The greenhouse gas emissions performance of cellulosic ethanol supply chains in Europe. Biotechnol Biofuels 2:1–19CrossRef
Metadaten
Titel
Design and simulation of an organosolv process for bioethanol production
verfasst von
Jesse Kautto
Matthew J. Realff
Arthur J. Ragauskas
Publikationsdatum
01.09.2013
Verlag
Springer Berlin Heidelberg
Erschienen in
Biomass Conversion and Biorefinery / Ausgabe 3/2013
Print ISSN: 2190-6815
Elektronische ISSN: 2190-6823
DOI
https://doi.org/10.1007/s13399-013-0074-6

Weitere Artikel der Ausgabe 3/2013

Biomass Conversion and Biorefinery 3/2013 Zur Ausgabe