Skip to main content

2018 | OriginalPaper | Buchkapitel

7. Design, Development and Application of Nanocoatings

verfasst von : Akash Singh, Siddhant Mittal, Deepa Mudgal, Pallav Gupta

Erschienen in: Nanomaterials and Their Applications

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Coatings can be defined as the application of one material on the other material usually known as substrate. They are mainly applied on the material to protect it from any degradation which occurs due to environmental conditions. They act as an interface between the substrate and the environment. Moreover, they are also used for decorative purposes. Nanocoatings are those coatings in which the size of a particle is in the range of 1–1000 nm at least in one dimension. Nanocoatings provide more wear resistance attributed to its higher toughness and hardness to the substrate as compared to other conventional coatings. They also provide antimicrobial, wrinkle resistance, stain resistance, hydrophobic and hydrophilic characteristics, UV protection and antistatic properties affecting the bulk properties of the substrate material. Nanocoatings can be manufactured by mainly two methods: vapour phase method and liquid phase method. Vapour phase method includes chemical vapour deposition, laser ablation, vapour condensation, plasma arc and flame synthesis processes. Liquid phase method includes sol–gel, precipitation, electrolysis, microemulsion and hydrothermal processes. Nanocoatings are used in aircraft (landing gears and engines), industrial rolls, hydraulic shafts, boiler tubes, turbines and pumps to prevent corrosion and erosion problems. They are also used on cars, pens, watches and cosmetics for decorative purposes. Nanocoatings are used on money bills so as to prevent forgery. This chapter discusses in detail about the nanocoatings. Efforts have also been made to summarize the various processing techniques for their fabrication. Effect of nanocoatings on structural, mechanical and corrosion behaviour is also discussed. It is expected that the present chapter will be useful in designing and developing nanocoatings for wide industrial applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat A.A. Tracton (ed.) Coatings technology handbook. (CRC press, USA, 2005) A.A. Tracton (ed.) Coatings technology handbook. (CRC press, USA, 2005)
2.
Zurück zum Zitat D.J. Branagan et al., High-performance nanoscale composite coatings for boiler applications. J. Therm. Spray Technol. 14(2), 196–204 (2005)CrossRef D.J. Branagan et al., High-performance nanoscale composite coatings for boiler applications. J. Therm. Spray Technol. 14(2), 196–204 (2005)CrossRef
3.
Zurück zum Zitat L. Barchi, U. Bardi, S. Caporali, M. Fantini, A. Scrivani, A. Scrivani, Electroplated bright aluminium coatings for anticorrosion and decorative purposes. Prog. Org. Coat. 67(2), 146–151 (2010)CrossRef L. Barchi, U. Bardi, S. Caporali, M. Fantini, A. Scrivani, A. Scrivani, Electroplated bright aluminium coatings for anticorrosion and decorative purposes. Prog. Org. Coat. 67(2), 146–151 (2010)CrossRef
4.
Zurück zum Zitat B.P. Reinherz, For Decorative Coating of Glass and Ceramic Articles. U.S. Patent No. 4,892,847, 9 Jan 1990 B.P. Reinherz, For Decorative Coating of Glass and Ceramic Articles. U.S. Patent No. 4,892,847, 9 Jan 1990
5.
Zurück zum Zitat J.C. Welch, S. Chakraborty, “Nano-coatings for articles.” U.S. Patent Application No. 13/022,047 J.C. Welch, S. Chakraborty, “Nano-coatings for articles.” U.S. Patent Application No. 13/022,047
6.
Zurück zum Zitat Hyung-Jun Kim, Chang-Hee Lee, Soon-Young Hwang, Superhardnano WC–12% Co coating by cold spray deposition. Mater. Sci. Eng., A 391(1), 243–248 (2005) Hyung-Jun Kim, Chang-Hee Lee, Soon-Young Hwang, Superhardnano WC–12% Co coating by cold spray deposition. Mater. Sci. Eng., A 391(1), 243–248 (2005)
7.
Zurück zum Zitat Zhenyu Wang, Enhou Han, Wei Ke, Influence of nano-LDHs on char formation and fire-resistant properties of flame-retardant coating. Prog. Org. Coat. 53(1), 29–37 (2005)CrossRef Zhenyu Wang, Enhou Han, Wei Ke, Influence of nano-LDHs on char formation and fire-resistant properties of flame-retardant coating. Prog. Org. Coat. 53(1), 29–37 (2005)CrossRef
8.
Zurück zum Zitat S. Radhakrishnan et al., Conducting polyaniline–nano-TiO2 composites for smart corrosion resistant coatings. Electrochim. Acta 54(4), 1249–1254 (2009)CrossRef S. Radhakrishnan et al., Conducting polyaniline–nano-TiO2 composites for smart corrosion resistant coatings. Electrochim. Acta 54(4), 1249–1254 (2009)CrossRef
9.
Zurück zum Zitat Roya Dastjerdi, Majid Montazer, A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties. Colloids Surf. B 79(1), 5–18 (2010)CrossRef Roya Dastjerdi, Majid Montazer, A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties. Colloids Surf. B 79(1), 5–18 (2010)CrossRef
10.
Zurück zum Zitat G. Wu et al., A novel route to control refractive index of sol-gel derived nano-porous silica films used as broadband antireflective coatings. Mat. Sci. Eng.: B 78(2), 135–139 (2000) G. Wu et al., A novel route to control refractive index of sol-gel derived nano-porous silica films used as broadband antireflective coatings. Mat. Sci. Eng.: B 78(2), 135–139 (2000)
11.
Zurück zum Zitat Mark T. Swihart, Vapor-phase synthesis of nanoparticles. Curr. Opin. Colloid Interface Sci. 8(1), 127–133 (2003)CrossRef Mark T. Swihart, Vapor-phase synthesis of nanoparticles. Curr. Opin. Colloid Interface Sci. 8(1), 127–133 (2003)CrossRef
12.
Zurück zum Zitat A.R. Gupta, V. Kant, Research article synthesis, characterization and biomedical applications of nanoparticles, Vijayta Gupta Department of Chemistry, University of Jammu, Jammu-180006, India. Sci. Int. 1(5) (2013) A.R. Gupta, V. Kant, Research article synthesis, characterization and biomedical applications of nanoparticles, Vijayta Gupta Department of Chemistry, University of Jammu, Jammu-180006, India. Sci. Int. 1(5) (2013)
13.
Zurück zum Zitat P. Tartaj, M.P. Morales, S. Veintemillas-Verdaguer, T. Gonzalez Carreno, C.J. Serna, Synthesis, properties and biomedical applications of magnetic nanoparticles, in Handbook of Magnetic Materials, ed. by K.H.J. Buschow (Elsevier, Amsterdam, 2006), pp. 403–482 P. Tartaj, M.P. Morales, S. Veintemillas-Verdaguer, T. Gonzalez Carreno, C.J. Serna, Synthesis, properties and biomedical applications of magnetic nanoparticles, in Handbook of Magnetic Materials, ed. by K.H.J. Buschow (Elsevier, Amsterdam, 2006), pp. 403–482
14.
Zurück zum Zitat Mark T. Swihart, Vapor-phase synthesis of nanoparticles. Curr. Opin. Colloid Interface Sci. 8(1), 127–133 (2003)CrossRef Mark T. Swihart, Vapor-phase synthesis of nanoparticles. Curr. Opin. Colloid Interface Sci. 8(1), 127–133 (2003)CrossRef
15.
Zurück zum Zitat F.E. Kruis, H. Fissan, A. Peled, Synthesis of nanoparticles in the gas phase for electronic, optical and magnetic applications—A review. J. Aerosol Sci. 29(5), 511–535 (1998) F.E. Kruis, H. Fissan, A. Peled, Synthesis of nanoparticles in the gas phase for electronic, optical and magnetic applications—A review. J. Aerosol Sci. 29(5), 511–535 (1998)
16.
Zurück zum Zitat H. Hahn, Gas phase synthesis of nanocrystallinematerials. Nanostruct. Mat. 9(1), 3–12 (1997) H. Hahn, Gas phase synthesis of nanocrystallinematerials. Nanostruct. Mat. 9(1), 3–12 (1997)
17.
Zurück zum Zitat S. Abbott, N. Holmes, Nanocoatings: Principles and Practice: From Research to Production. (DEStech Publications, Inc, USA, 2013) S. Abbott, N. Holmes, Nanocoatings: Principles and Practice: From Research to Production. (DEStech Publications, Inc, USA, 2013)
18.
Zurück zum Zitat C.F. Powell, J.H. Oxley, J.M. Blocher Jr., Vapor Deposition (Wiley, New York, 1967) C.F. Powell, J.H. Oxley, J.M. Blocher Jr., Vapor Deposition (Wiley, New York, 1967)
19.
Zurück zum Zitat K. Reichelt, X. Jiang, The preparation of thin films by physical vapour deposition methods. Thin Solid Films 191(1), 91–126 (1990)CrossRef K. Reichelt, X. Jiang, The preparation of thin films by physical vapour deposition methods. Thin Solid Films 191(1), 91–126 (1990)CrossRef
20.
Zurück zum Zitat D.M. Mattox, Handbook of Physical Vapor Deposition (PVD) Processing. (William Andrew, New York, 2010) D.M. Mattox, Handbook of Physical Vapor Deposition (PVD) Processing. (William Andrew, New York, 2010)
21.
Zurück zum Zitat G. Håkansson et al., Microstructures of TiN films grown by various physical vapour deposition techniques. Surf. Coat. Technol. 48(1), 51–67 (1991) G. Håkansson et al., Microstructures of TiN films grown by various physical vapour deposition techniques. Surf. Coat. Technol. 48(1), 51–67 (1991)
22.
Zurück zum Zitat J.-H. Park, T.S. Sudarshan (ed.), Chemical Vapor Deposition, vol. 2. (ASM international, USA, 2001) J.-H. Park, T.S. Sudarshan (ed.), Chemical Vapor Deposition, vol. 2. (ASM international, USA, 2001)
23.
Zurück zum Zitat K.L. Choy, Chemical vapour deposition of coatings. Prog. Mater Sci. 48(2), 57–170 (2003)CrossRef K.L. Choy, Chemical vapour deposition of coatings. Prog. Mater Sci. 48(2), 57–170 (2003)CrossRef
24.
Zurück zum Zitat J.O. Carlsson, P.M. Martin, Chemical vapor deposition. Handbook of Deposition Technologies for Films and Coatings (2010), pp. 314–63 J.O. Carlsson, P.M. Martin, Chemical vapor deposition. Handbook of Deposition Technologies for Films and Coatings (2010), pp. 314–63
25.
Zurück zum Zitat B.A. Campbell, A. Bryant, N.E. Miller, Chemical Vapor Deposition Process. U.S. Patent No. 4,547,404. 15 Oct. 1985 B.A. Campbell, A. Bryant, N.E. Miller, Chemical Vapor Deposition Process. U.S. Patent No. 4,547,404. 15 Oct. 1985
26.
Zurück zum Zitat M. Gupta et al., Initiated chemical vapor deposition (iCVD) of conformal polymeric nanocoatings for the surface modification of high-aspect-ratio pores. Chem Mat 20(4), 1646–1651 (2008) M. Gupta et al., Initiated chemical vapor deposition (iCVD) of conformal polymeric nanocoatings for the surface modification of high-aspect-ratio pores. Chem Mat 20(4), 1646–1651 (2008)
27.
Zurück zum Zitat F.E. Kruis, H. Fissan, A. Peled. Synthesis of nanoparticles in the gas phase for electronic, optical and magnetic applications—a review. J. Aerosol Sci. 29(5), 511–535 (1998) F.E. Kruis, H. Fissan, A. Peled. Synthesis of nanoparticles in the gas phase for electronic, optical and magnetic applications—a review. J. Aerosol Sci. 29(5), 511–535 (1998)
28.
Zurück zum Zitat M. Aliofkhazraei, Nanocoatings: Size Effect in Nanostructured Films. (Springer Science & Business Media, Berlin, 2011) M. Aliofkhazraei, Nanocoatings: Size Effect in Nanostructured Films. (Springer Science & Business Media, Berlin, 2011)
29.
Zurück zum Zitat Cao Qin, Sylvain Coulombe, Organic layer-coated metal nanoparticles prepared by a combined arc evaporation/condensation and plasma polymerization process. Plasma Sources Sci. Technol. 16(2), 240 (2007)CrossRef Cao Qin, Sylvain Coulombe, Organic layer-coated metal nanoparticles prepared by a combined arc evaporation/condensation and plasma polymerization process. Plasma Sources Sci. Technol. 16(2), 240 (2007)CrossRef
30.
Zurück zum Zitat J.H. Ahn, E.P. Song, S.H. Lee, N.J. Kim, Wear resistance of plasma-sprayed Al2O3-TiO2 nanocoatings. Key Eng. Mater. 345–346, 641–644 (2007)CrossRef J.H. Ahn, E.P. Song, S.H. Lee, N.J. Kim, Wear resistance of plasma-sprayed Al2O3-TiO2 nanocoatings. Key Eng. Mater. 345–346, 641–644 (2007)CrossRef
31.
Zurück zum Zitat Bhaskaran Manjith Kumar, Subramshu Shekar Bhattacharya, Flame synthesis and characterization of nanocrystalline titania powders. Proces Appl Ceramics 6, 165–171 (2012)CrossRef Bhaskaran Manjith Kumar, Subramshu Shekar Bhattacharya, Flame synthesis and characterization of nanocrystalline titania powders. Proces Appl Ceramics 6, 165–171 (2012)CrossRef
32.
Zurück zum Zitat Hendrik K. Kammler, Lutz Mädler, Sotiris E. Pratsinis, Flame synthesis of nanoparticles. Chem. Eng. Technol. 24(6), 583–596 (2001)CrossRef Hendrik K. Kammler, Lutz Mädler, Sotiris E. Pratsinis, Flame synthesis of nanoparticles. Chem. Eng. Technol. 24(6), 583–596 (2001)CrossRef
33.
Zurück zum Zitat Karsten Wegner, Wendelin J. Stark, Sotiris E. Pratsinis, Flame-nozzle synthesis of nanoparticles with closely controlled size, morphology and crystallinity. Mater. Lett. 55(5), 318–321 (2002)CrossRef Karsten Wegner, Wendelin J. Stark, Sotiris E. Pratsinis, Flame-nozzle synthesis of nanoparticles with closely controlled size, morphology and crystallinity. Mater. Lett. 55(5), 318–321 (2002)CrossRef
34.
Zurück zum Zitat Wendelin J. Stark, Sotiris E. Pratsinis, Aerosol flame reactors for manufacture of nanoparticles. Powder Technol. 126(2), 103–108 (2002)CrossRef Wendelin J. Stark, Sotiris E. Pratsinis, Aerosol flame reactors for manufacture of nanoparticles. Powder Technol. 126(2), 103–108 (2002)CrossRef
35.
Zurück zum Zitat J. Weber, Method for Manufacturing a Medical Device Having a Coated Portion by Laser Ablation. U.S. Patent No. 6,517,888, 11 Feb 2003 J. Weber, Method for Manufacturing a Medical Device Having a Coated Portion by Laser Ablation. U.S. Patent No. 6,517,888, 11 Feb 2003
36.
Zurück zum Zitat D.B. Chrisey, G.K. Hubler (ed.), Pulsed Laser Deposition of Thin Films, vol. 3 (1994) D.B. Chrisey, G.K. Hubler (ed.), Pulsed Laser Deposition of Thin Films, vol. 3 (1994)
37.
Zurück zum Zitat Alfredo M. Morales, Charles M. Lieber, A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 279(5348), 208–211 (1998)CrossRef Alfredo M. Morales, Charles M. Lieber, A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 279(5348), 208–211 (1998)CrossRef
38.
Zurück zum Zitat B.N. Chichkov, et al., Femtosecond, picosecond and nanosecond laser ablation of solids. Appl. Phys. A 63(2) (1996): 109–115 B.N. Chichkov, et al., Femtosecond, picosecond and nanosecond laser ablation of solids. Appl. Phys. A 63(2) (1996): 109–115
39.
Zurück zum Zitat C. Momma et al., Short-pulse laser ablation of solid targets. Opt. Commun. 129(1), 134–142 (1996) C. Momma et al., Short-pulse laser ablation of solid targets. Opt. Commun. 129(1), 134–142 (1996)
40.
Zurück zum Zitat J.L. Arias, et al., Micro-and nano-testing of calcium phosphate coatings produced by pulsed laser deposition. Biomaterials 24(20), 3403–3408 (2003) J.L. Arias, et al., Micro-and nano-testing of calcium phosphate coatings produced by pulsed laser deposition. Biomaterials 24(20), 3403–3408 (2003)
42.
Zurück zum Zitat W. Dissanayaka Wijesooriyage, Electrochemical Deposition and Characterization of Thermoelectric Thin Films of (BixSb1-x) 2Te3. (2011), p. 20 W. Dissanayaka Wijesooriyage, Electrochemical Deposition and Characterization of Thermoelectric Thin Films of (BixSb1-x) 2Te3. (2011), p. 20
43.
Zurück zum Zitat J. Eskhult, Electrochemical Deposition of Nanostructured Metal/Metal-Oxide Coatings (2007), p. 11 J. Eskhult, Electrochemical Deposition of Nanostructured Metal/Metal-Oxide Coatings (2007), p. 11
44.
Zurück zum Zitat Gareth J. Owens, Rajendra K. Singh, Farzad Foroutan, Mustafa Alqaysi, Cheol-Min Han, Chinmaya Mahapatra, Hae-Won Kim, Jonathan C. Knowles, Sol–gel based materials for biomedical applications. Prog. Mater Sci. 77, 1–79 (2016)CrossRef Gareth J. Owens, Rajendra K. Singh, Farzad Foroutan, Mustafa Alqaysi, Cheol-Min Han, Chinmaya Mahapatra, Hae-Won Kim, Jonathan C. Knowles, Sol–gel based materials for biomedical applications. Prog. Mater Sci. 77, 1–79 (2016)CrossRef
45.
Zurück zum Zitat C.A. Milea, C. Bogatu, A. Duta, The influence of parameters in silica sol-gel process. Bull. Transilvania Univ. Brasov 4(53), 59–66 (2011) C.A. Milea, C. Bogatu, A. Duta, The influence of parameters in silica sol-gel process. Bull. Transilvania Univ. Brasov 4(53), 59–66 (2011)
47.
Zurück zum Zitat S. Sakka, Handbook of Sol-Gel Science and Technology. 1. Sol-Gel Processing, vol. 1. (Springer Science & Business Media, Berlin, 2005) S. Sakka, Handbook of Sol-Gel Science and Technology. 1. Sol-Gel Processing, vol. 1. (Springer Science & Business Media, Berlin, 2005)
48.
Zurück zum Zitat A.C. Pierre, Introduction to Sol-Gel Processing, vol. 1. (Springer Science & Business Media, Berlin, 2013), pp. 12–15 A.C. Pierre, Introduction to Sol-Gel Processing, vol. 1. (Springer Science & Business Media, Berlin, 2013), pp. 12–15
49.
Zurück zum Zitat M.C. Kuo, S.K. Yen, The process of electrochemical deposited hydroxyapatite coatings on biomedical titanium at room temperature. Mater. Sci. Eng., C 20(1), 153–160 (2002)CrossRef M.C. Kuo, S.K. Yen, The process of electrochemical deposited hydroxyapatite coatings on biomedical titanium at room temperature. Mater. Sci. Eng., C 20(1), 153–160 (2002)CrossRef
50.
Zurück zum Zitat Y. Zhang, T.A.O. Jie, Y. Pang, W. Wei, W. Tao, Electrochemical deposition of hydroxyapatite coatings on titanium. Trans. Nonferrous Metals Soc. China 16(3), 633–637 (2006) Y. Zhang, T.A.O. Jie, Y. Pang, W. Wei, W. Tao, Electrochemical deposition of hydroxyapatite coatings on titanium. Trans. Nonferrous Metals Soc. China 16(3), 633–637 (2006)
51.
Zurück zum Zitat B. Ben-Nissan, A. Milev, R. Vago. Morphology of sol–gel derived nano-coated coralline hydroxyapatite. Biomaterials 25(20), 4971–4975 (2004) B. Ben-Nissan, A. Milev, R. Vago. Morphology of sol–gel derived nano-coated coralline hydroxyapatite. Biomaterials 25(20), 4971–4975 (2004)
52.
Zurück zum Zitat Hamed Mazaheri, Saeed Reza Allahkaram, Deposition, characterization and electrochemical evaluation of Ni–P–nano diamond composite coatings. Appl. Surf. Sci. 258(10), 4574–4580 (2012)CrossRef Hamed Mazaheri, Saeed Reza Allahkaram, Deposition, characterization and electrochemical evaluation of Ni–P–nano diamond composite coatings. Appl. Surf. Sci. 258(10), 4574–4580 (2012)CrossRef
53.
Zurück zum Zitat M.L. Zheludkevich, R. Serra, M.F. Montemor, K.A. Yasakau, I.M. Miranda Salvado, M.G.S. Ferreira, Nanostructured sol–gel coatings doped with cerium nitrate as pre-treatments for AA2024-T3: corrosion protection performance. Electrochimica Acta 51(2), 208–217 (2005) M.L. Zheludkevich, R. Serra, M.F. Montemor, K.A. Yasakau, I.M. Miranda Salvado, M.G.S. Ferreira, Nanostructured sol–gel coatings doped with cerium nitrate as pre-treatments for AA2024-T3: corrosion protection performance. Electrochimica Acta 51(2), 208–217 (2005)
54.
Zurück zum Zitat S.V. Lamaka, M.F. Montemor, A.F. Galio, M.L. Zheludkevich, C. Trindade, L.F. Dick, M.G.S. Ferreira, Novel hybrid sol–gel coatings for corrosion protection of AZ31B magnesium alloy. Electrochim. Acta 53(14), 4773–4783 (2008)CrossRef S.V. Lamaka, M.F. Montemor, A.F. Galio, M.L. Zheludkevich, C. Trindade, L.F. Dick, M.G.S. Ferreira, Novel hybrid sol–gel coatings for corrosion protection of AZ31B magnesium alloy. Electrochim. Acta 53(14), 4773–4783 (2008)CrossRef
55.
Zurück zum Zitat Abdel Salam Hamdy, Advanced nano-particles anti-corrosion ceria based sol gel coatings for aluminum alloys. Mater. Lett. 60(21), 2633–2637 (2006)CrossRef Abdel Salam Hamdy, Advanced nano-particles anti-corrosion ceria based sol gel coatings for aluminum alloys. Mater. Lett. 60(21), 2633–2637 (2006)CrossRef
56.
Zurück zum Zitat R.I.M. Asri, W.S.W. Harun, M.A. Hassan, S.A.C. Ghani, Z. Buyong, A review of hydroxyapatite-based coating techniques: sol–gel and electrochemical depositions on biocompatible metals. J. Mech. Behav. Biomed. Mater. 57, 95–108 (2016)CrossRef R.I.M. Asri, W.S.W. Harun, M.A. Hassan, S.A.C. Ghani, Z. Buyong, A review of hydroxyapatite-based coating techniques: sol–gel and electrochemical depositions on biocompatible metals. J. Mech. Behav. Biomed. Mater. 57, 95–108 (2016)CrossRef
58.
Zurück zum Zitat M. Lira-Cantú, A.M. Sabio, A. Brustenga, P. Gómez-Romero, Electrochemical deposition of black nickel solar absorber coatings on stainless steel AISI316L for thermal solar cells. Solar Energy Mat. Solar Cells 87(1), 685–694 (2005) M. Lira-Cantú, A.M. Sabio, A. Brustenga, P. Gómez-Romero, Electrochemical deposition of black nickel solar absorber coatings on stainless steel AISI316L for thermal solar cells. Solar Energy Mat. Solar Cells 87(1), 685–694 (2005)
59.
Zurück zum Zitat N. Selvakumar, H.C. Barshilia, Review of physical vapor deposited (PVD) spectrally selective coatings for mid-and high-temperature solar thermal applications. Solar Energy Mat. Solar Cells 98, 1–23 (2012) N. Selvakumar, H.C. Barshilia, Review of physical vapor deposited (PVD) spectrally selective coatings for mid-and high-temperature solar thermal applications. Solar Energy Mat. Solar Cells 98, 1–23 (2012)
60.
Zurück zum Zitat C. Wolf, C. Rüssel, Sol-gel formation of zirconia: preparation, structure and rheology of sols. J. Mat. Sci. 27(14), 3749–3755 (1992)CrossRef C. Wolf, C. Rüssel, Sol-gel formation of zirconia: preparation, structure and rheology of sols. J. Mat. Sci. 27(14), 3749–3755 (1992)CrossRef
Metadaten
Titel
Design, Development and Application of Nanocoatings
verfasst von
Akash Singh
Siddhant Mittal
Deepa Mudgal
Pallav Gupta
Copyright-Jahr
2018
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-6214-8_7

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.