Skip to main content
Erschienen in: Wireless Personal Communications 1/2019

28.09.2018

Design Implementation of Concentric Loops with Stubs Metamaterial Absorber

verfasst von: Dhawan Singh, Viranjay M. Srivastava

Erschienen in: Wireless Personal Communications | Ausgabe 1/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A novel design for passive tuned concentric loops with stubs metamaterial absorbers (MMA) has been proposed for microwave regime. This proposed MMA consists of two concentric loops separated by stubs and modified with rectangular bars. The proposed MMA structure shows versatility in design and tuned between Ku-band and X-band just by varying the length of shorted stubs and rectangular bar. The MMA structure has been found highly insensitive to oblique angle of incidence and polarization for TE and TM modes of the electromagnetic wave. The total thickness of the modified designed absorber is only 0.0092 λ0, where λ0 is the free-space wavelength at the resonant frequency. The simulated results are well matched with the measured results. The widespread potential applications of the proposed structure are found in antenna design for the reduction of radar cross section suitable for stealth technology along with radar and other communication areas.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Singh, D., & Srivastava, V. M. (2018). Low radar cross section of patch antenna using shorted stubs metamaterial absorber. International Journal of Microwave and Optical Technology (IJMOT), 13(3), 194–202. Singh, D., & Srivastava, V. M. (2018). Low radar cross section of patch antenna using shorted stubs metamaterial absorber. International Journal of Microwave and Optical Technology (IJMOT), 13(3), 194–202.
2.
Zurück zum Zitat Lee, J., Yoon, Y. J., & Lim, S. (2012). Ultra-thin polarization independent absorber using hexagonal interdigital metamaterial. Electronics and Telecommunications Research Institute Journal (ETRI), 34(1), 126–129. Lee, J., Yoon, Y. J., & Lim, S. (2012). Ultra-thin polarization independent absorber using hexagonal interdigital metamaterial. Electronics and Telecommunications Research Institute Journal (ETRI), 34(1), 126–129.
3.
Zurück zum Zitat Singh, D., & Srivastava, V. M. (2018). Dual resonances shorted stub circular rings metamaterial absorber. AUE-International Journal of Electronics and Communication, 83, 58–66. Singh, D., & Srivastava, V. M. (2018). Dual resonances shorted stub circular rings metamaterial absorber. AUE-International Journal of Electronics and Communication, 83, 58–66.
4.
Zurück zum Zitat Tao, H., Bingham, C. M., Strikwerda, A. C., Pilon, D., Shrekenhamer, D., Landy, N. I., et al. (2008). Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characteristics. Physical Review B, 78(24), 031–034.CrossRef Tao, H., Bingham, C. M., Strikwerda, A. C., Pilon, D., Shrekenhamer, D., Landy, N. I., et al. (2008). Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characteristics. Physical Review B, 78(24), 031–034.CrossRef
5.
Zurück zum Zitat Bharti, G., Singh, G., Jha, K. R., & Jyoti, R. (August 8–10, 2013). Circular ring frequency selective surface: A novel synthesis technique. In 6th international conference on contemporary computing (IC3) (pp. 491–496). Noida. Bharti, G., Singh, G., Jha, K. R., & Jyoti, R. (August 8–10, 2013). Circular ring frequency selective surface: A novel synthesis technique. In 6th international conference on contemporary computing (IC3) (pp. 491–496). Noida.
6.
Zurück zum Zitat Ayop, O., Rahim, M. K. A., Murad, N. A., & Samsuri, N.A. (December 8–10, 2014). Polarization insensitive and wide operating angle metamaterial absorber at X-band. In IEEE Asia-Pacific conference on applied electromagnetics (APACE2014). Johor Bahru. Ayop, O., Rahim, M. K. A., Murad, N. A., & Samsuri, N.A. (December 8–10, 2014). Polarization insensitive and wide operating angle metamaterial absorber at X-band. In IEEE Asia-Pacific conference on applied electromagnetics (APACE2014). Johor Bahru.
7.
Zurück zum Zitat Patel, S. K., Argyropoulos, C., & Kosta, Y. P. (2016). Broadband compact microstrip patch antenna design loaded by multiple split ring resonator superstrate and substrate. Waves in Random and Complex Media, 27(1), 92–102.CrossRef Patel, S. K., Argyropoulos, C., & Kosta, Y. P. (2016). Broadband compact microstrip patch antenna design loaded by multiple split ring resonator superstrate and substrate. Waves in Random and Complex Media, 27(1), 92–102.CrossRef
8.
Zurück zum Zitat Baviskar, J., Mulla, A., Baviskar, A., Auti, D., & Waghmare, R. (March 5–12, 2016). Performance enhancement of microstrip patch antenna array with incorporation of metamaterial lens. In IEEE aerospace conference (pp. 1–10). Yellowstone. Baviskar, J., Mulla, A., Baviskar, A., Auti, D., & Waghmare, R. (March 5–12, 2016). Performance enhancement of microstrip patch antenna array with incorporation of metamaterial lens. In IEEE aerospace conference (pp. 1–10). Yellowstone.
9.
Zurück zum Zitat Li, Y., Zhang, K., Yang, L. A., & Du, L. (2017). Gain enhancement and wideband RCS reduction of a microstrip antenna using triple-band planar electromagnetic band-gap structure. Progress in Electromagnetics Research Letters, 65, 103–108.CrossRef Li, Y., Zhang, K., Yang, L. A., & Du, L. (2017). Gain enhancement and wideband RCS reduction of a microstrip antenna using triple-band planar electromagnetic band-gap structure. Progress in Electromagnetics Research Letters, 65, 103–108.CrossRef
10.
Zurück zum Zitat Zhao, Y., Gao, J., Cao, X., Liu, T., Xu, L., Liu, X., et al. (2017). In-band RCS reduction of waveguide slot array using metasurface bars. IEEE Transactions on Antennas and Propagation, 65(2), 943–947.CrossRef Zhao, Y., Gao, J., Cao, X., Liu, T., Xu, L., Liu, X., et al. (2017). In-band RCS reduction of waveguide slot array using metasurface bars. IEEE Transactions on Antennas and Propagation, 65(2), 943–947.CrossRef
11.
Zurück zum Zitat Singh, D., & Srivastava, V. M. (2018). An analysis of RCS for dual-band slotted patch antenna with a thin dielectric using shorted stubs metamaterial absorber. AUE-International Journal of Electronics and Communication, 90, 53–62. Singh, D., & Srivastava, V. M. (2018). An analysis of RCS for dual-band slotted patch antenna with a thin dielectric using shorted stubs metamaterial absorber. AUE-International Journal of Electronics and Communication, 90, 53–62.
12.
Zurück zum Zitat Li, W., & Valentine, J. (2014). Metamaterial perfect absorber based hot electron photodetection. Nano Letters, 14(6), 3510–3514.CrossRef Li, W., & Valentine, J. (2014). Metamaterial perfect absorber based hot electron photodetection. Nano Letters, 14(6), 3510–3514.CrossRef
13.
Zurück zum Zitat Astorino, M. D., Frezza, F., & Tedeschi, N. (2017). Ultra-thin narrow-band, complementary narrow-band, and dual-band metamaterial absorbers for applications in the THz regime. Journal of Applied Physics, 121, 1031–10310.CrossRef Astorino, M. D., Frezza, F., & Tedeschi, N. (2017). Ultra-thin narrow-band, complementary narrow-band, and dual-band metamaterial absorbers for applications in the THz regime. Journal of Applied Physics, 121, 1031–10310.CrossRef
14.
Zurück zum Zitat Zhang, J., Wang, G., Zhang, B., He, T., He, Y., & Shen, J. (2016). Photo-excited broadband tunable terahertz metamaterial absorber. Optical Materials, 54, 32–36.CrossRef Zhang, J., Wang, G., Zhang, B., He, T., He, Y., & Shen, J. (2016). Photo-excited broadband tunable terahertz metamaterial absorber. Optical Materials, 54, 32–36.CrossRef
15.
Zurück zum Zitat Ma, B., Liu, S., Kong, X., Jiang, Y., Xu, J., & Yang, H. (2016). A novel wide-band tunable metamaterial absorber based on varactor diode/graphene. Optik-International Journal for Light and Electron Optics, 127(5), 3039–3043.CrossRef Ma, B., Liu, S., Kong, X., Jiang, Y., Xu, J., & Yang, H. (2016). A novel wide-band tunable metamaterial absorber based on varactor diode/graphene. Optik-International Journal for Light and Electron Optics, 127(5), 3039–3043.CrossRef
16.
Zurück zum Zitat Li, J., Jiang, J., He, Y., Xu, W., Chen, M., Miao, L., et al. (2016). Design of a tunable low-frequency and broadband radar absorber based on active frequency selective surface. IEEE Antennas and Wireless Propagation Letters, 15, 774–777.CrossRef Li, J., Jiang, J., He, Y., Xu, W., Chen, M., Miao, L., et al. (2016). Design of a tunable low-frequency and broadband radar absorber based on active frequency selective surface. IEEE Antennas and Wireless Propagation Letters, 15, 774–777.CrossRef
17.
Zurück zum Zitat Qi, L., Li, C., & Fang, G. (2014). Tunable terahertz metamaterial absorbers using active diodes. International Journal of Electromagnetics and Applications, 4(3), 57–60. Qi, L., Li, C., & Fang, G. (2014). Tunable terahertz metamaterial absorbers using active diodes. International Journal of Electromagnetics and Applications, 4(3), 57–60.
18.
Zurück zum Zitat Yuan, H., Zhu, B., Zhao, J., & Feng, Y. (October 23–25, 2013). Metamaterial absorber with active frequency tuning in X-band. In Proceedings of the international symposium on antennas and propagation (ISAP) (pp. 1219–1221). Nanjing. Yuan, H., Zhu, B., Zhao, J., & Feng, Y. (October 23–25, 2013). Metamaterial absorber with active frequency tuning in X-band. In Proceedings of the international symposium on antennas and propagation (ISAP) (pp. 1219–1221). Nanjing.
19.
Zurück zum Zitat Ucar, M. H. B., Sondas, A., & Erdemli, Y. E. (2008). Switchable split-ring frequency selective surfaces. Progress in Electromagnetics Research B, 6, 65–79.CrossRef Ucar, M. H. B., Sondas, A., & Erdemli, Y. E. (2008). Switchable split-ring frequency selective surfaces. Progress in Electromagnetics Research B, 6, 65–79.CrossRef
20.
Zurück zum Zitat Chen, X., Grzegorczyk, T. M., Wu, B. I., Pacheco, J., & Kong, J. A. (2004). Robust method to retrieve the constitutive effective parameters of metamaterials. Physical Review E, 70, 6081–6087. Chen, X., Grzegorczyk, T. M., Wu, B. I., Pacheco, J., & Kong, J. A. (2004). Robust method to retrieve the constitutive effective parameters of metamaterials. Physical Review E, 70, 6081–6087.
21.
Zurück zum Zitat Watts, C. M., Liu, X., & Padilla, W. J. (2012). Metamaterial electromagnetic wave absorbers. Advanced Optical Materials, 24(23), OP98–OP120. Watts, C. M., Liu, X., & Padilla, W. J. (2012). Metamaterial electromagnetic wave absorbers. Advanced Optical Materials, 24(23), OP98–OP120.
22.
Zurück zum Zitat Dai, S., Zhao, D., Li, Q., & Qiu, M. (2013). Double-sided polarization-independent plasmonic absorber at near-infrared region. Optics Express, 21(11), 13125–13133.CrossRef Dai, S., Zhao, D., Li, Q., & Qiu, M. (2013). Double-sided polarization-independent plasmonic absorber at near-infrared region. Optics Express, 21(11), 13125–13133.CrossRef
23.
Zurück zum Zitat Liu, W. (January 29–31, 2015). The study status and development of metamaterial absorber. In International conference on logistics engineering, management and computer science (LEMCS 2015) (pp. 1318–1322). Shenyang. Liu, W. (January 29–31, 2015). The study status and development of metamaterial absorber. In International conference on logistics engineering, management and computer science (LEMCS 2015) (pp. 1318–1322). Shenyang.
24.
Zurück zum Zitat Singh, D., & Srivastava, V. M. (January 5–7, 2017). Triple band regular decagon shaped metamaterial absorber for X-band applications. In IEEE international conference on computer communication and informatics (ICCCI-2017) (pp. 411–415). Coimbatore. Singh, D., & Srivastava, V. M. (January 5–7, 2017). Triple band regular decagon shaped metamaterial absorber for X-band applications. In IEEE international conference on computer communication and informatics (ICCCI-2017) (pp. 411–415). Coimbatore.
25.
Zurück zum Zitat Smith, D. R., Vier, D. C., Koschny, T., & Soukoulis, C. M. (2005). Electromagnetic parameter retrieval from inhomogeneous metamaterials. Physical Review E, 71, 6171–61711. Smith, D. R., Vier, D. C., Koschny, T., & Soukoulis, C. M. (2005). Electromagnetic parameter retrieval from inhomogeneous metamaterials. Physical Review E, 71, 6171–61711.
26.
Zurück zum Zitat Padooru, Y. R., Yakovlev, A. B., Kaipa, C. S. R., Medina, F., & Mesa, F. (2011). Circuit modeling of multiband high-impedance surface absorbers in the microwave regime. Physical Review B, 84, 1081-11.CrossRef Padooru, Y. R., Yakovlev, A. B., Kaipa, C. S. R., Medina, F., & Mesa, F. (2011). Circuit modeling of multiband high-impedance surface absorbers in the microwave regime. Physical Review B, 84, 1081-11.CrossRef
27.
Zurück zum Zitat Qiaoxia, G., Xiaomin, L., Zhiyong, D., Xiaoqiang, S., Fengying, M., & Erjun, L. (2013). Study on absorbing properties and mechanism of cross-shaped metamaterial absorber. Infrared and Laser Engineering, 42(6), 1528–1532. Qiaoxia, G., Xiaomin, L., Zhiyong, D., Xiaoqiang, S., Fengying, M., & Erjun, L. (2013). Study on absorbing properties and mechanism of cross-shaped metamaterial absorber. Infrared and Laser Engineering, 42(6), 1528–1532.
28.
Zurück zum Zitat Landy, N. I., Bingham, C. M., Tyler, T., Jokerst, N., Smith, D. R., & Padilla, W. J. (2009). Design, theory, and measurement of a polarization insensitive absorber for terahertz imaging. Physical Review B, 79, 1041–1046.CrossRef Landy, N. I., Bingham, C. M., Tyler, T., Jokerst, N., Smith, D. R., & Padilla, W. J. (2009). Design, theory, and measurement of a polarization insensitive absorber for terahertz imaging. Physical Review B, 79, 1041–1046.CrossRef
29.
Zurück zum Zitat Landy, N. I., Sajuyigbe, S., Mock, J. J., Smith, D. R., & Padilla, W. J. (2008). Perfect metamaterial absorber. Physical Review Letter, 100(20), 1–4.CrossRef Landy, N. I., Sajuyigbe, S., Mock, J. J., Smith, D. R., & Padilla, W. J. (2008). Perfect metamaterial absorber. Physical Review Letter, 100(20), 1–4.CrossRef
30.
Zurück zum Zitat Tao, H. (2008). Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization. Physical Review B, 78, 1031–1034. Tao, H. (2008). Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization. Physical Review B, 78, 1031–1034.
31.
Zurück zum Zitat Li, D., Szabo, Z., Qing, X., Li, P., & Chen, Z. N. (2012). A high gain antenna with an optimized metamaterial inspired superstrate. IEEE Transactions on Antennas and Propagation, 60(12), 6018–6023.CrossRef Li, D., Szabo, Z., Qing, X., Li, P., & Chen, Z. N. (2012). A high gain antenna with an optimized metamaterial inspired superstrate. IEEE Transactions on Antennas and Propagation, 60(12), 6018–6023.CrossRef
32.
Zurück zum Zitat Szabo, Z., Park, G. H., Hedge, R., & Li, P. (2010). A unique extraction of metamaterial parameters based on Kramers–kronig relationship. IEEE Transactions on Microwave Theory and Techniques, 58(10), 2046–2653.CrossRef Szabo, Z., Park, G. H., Hedge, R., & Li, P. (2010). A unique extraction of metamaterial parameters based on Kramers–kronig relationship. IEEE Transactions on Microwave Theory and Techniques, 58(10), 2046–2653.CrossRef
33.
Zurück zum Zitat Parazzoli, C. G., Greegor, R. B., & Tanielian, M. H. (2007). Physics of negative refraction and negative index materials (Vol. 98, pp. 261–329). Berlin: Springer.CrossRef Parazzoli, C. G., Greegor, R. B., & Tanielian, M. H. (2007). Physics of negative refraction and negative index materials (Vol. 98, pp. 261–329). Berlin: Springer.CrossRef
34.
Zurück zum Zitat Zarifi, D., Soleimani, M., & Nayyeri, V. (2012). Parameter retrieval of chiral metamaterials based on the causality principle. International Journal of RF and Microwave Computer-Aided Engineering, 23(5), 610–618.CrossRef Zarifi, D., Soleimani, M., & Nayyeri, V. (2012). Parameter retrieval of chiral metamaterials based on the causality principle. International Journal of RF and Microwave Computer-Aided Engineering, 23(5), 610–618.CrossRef
35.
Zurück zum Zitat Ghosh, S., Bhattacharyya, S., Chaurasiya, D., & Srivastava, K. V. (2015). An ultrawideband ultrathin metamaterial absorber based on circular split rings. IEEE Antennas and Wireless Propagation Letters, 14(1), 1172–1175.CrossRef Ghosh, S., Bhattacharyya, S., Chaurasiya, D., & Srivastava, K. V. (2015). An ultrawideband ultrathin metamaterial absorber based on circular split rings. IEEE Antennas and Wireless Propagation Letters, 14(1), 1172–1175.CrossRef
36.
Zurück zum Zitat Lee, J., & Lim, S. (2011). Bandwidth-enhanced and polarization-insensitive metamaterial absorber using double resonance. Electronics Letters, 47(1), 8–9.CrossRef Lee, J., & Lim, S. (2011). Bandwidth-enhanced and polarization-insensitive metamaterial absorber using double resonance. Electronics Letters, 47(1), 8–9.CrossRef
37.
Zurück zum Zitat Liu, Y., Gu, S., Luo, C., & Zhao, X. (2012). Ultra-thin broadband metamaterial absorber. Applied Physics A, 108(1), 19–24.CrossRef Liu, Y., Gu, S., Luo, C., & Zhao, X. (2012). Ultra-thin broadband metamaterial absorber. Applied Physics A, 108(1), 19–24.CrossRef
38.
Zurück zum Zitat Soheilifar, M. R., & Sadeghzadeh, R. A. (2014). Design, fabrication and characterisation of scaled and stacked layers planar metamaterial absorber. IET Microwaves, Antennas and Propagation, 9(1), 86–93.CrossRef Soheilifar, M. R., & Sadeghzadeh, R. A. (2014). Design, fabrication and characterisation of scaled and stacked layers planar metamaterial absorber. IET Microwaves, Antennas and Propagation, 9(1), 86–93.CrossRef
39.
Zurück zum Zitat Cheng, Y., Yang, H., Cheng, Z., & Wu, N. (2011). Perfect metamaterial absorber based on a split-ring-cross resonator. Applied Physics A, 102(1), 99–103.CrossRef Cheng, Y., Yang, H., Cheng, Z., & Wu, N. (2011). Perfect metamaterial absorber based on a split-ring-cross resonator. Applied Physics A, 102(1), 99–103.CrossRef
Metadaten
Titel
Design Implementation of Concentric Loops with Stubs Metamaterial Absorber
verfasst von
Dhawan Singh
Viranjay M. Srivastava
Publikationsdatum
28.09.2018
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 1/2019
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-018-6012-y

Weitere Artikel der Ausgabe 1/2019

Wireless Personal Communications 1/2019 Zur Ausgabe

Neuer Inhalt