Skip to main content
Erschienen in: Journal of Electronic Materials 9/2021

06.07.2021 | Original Research Article

Design, Investigation, and Sensitivity Analysis of a Biosensor Based on an Optimized Electrostatically Doped Nanotube TFET

verfasst von: Ashok Kumar Gupta, Ashish Raman

Erschienen in: Journal of Electronic Materials | Ausgabe 9/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper proposes an electrostatically doped nanotube TFET for biosensor (Bio-NT-TFET) application. The device design and sensitivity for bio-sensing applications are analyzed. An electrostatic doping technique is used to creating the p-type source region. Source voltage of −1.2 V (VS = −1.2 V) is used for the electrostatically doped Bio-NT-TFET. For the design of the Bio-NT-TFET, device specifications including hole/electron carrier concentration, electric field, potential, and electron nonlocal band-to-band tunneling (BTBT) rate are investigated for K = 8. Analog parameters including ON current, drain current, OFF current, ION/IOFF current ratio, subthreshold slope, threshold voltage, and the average subthreshold slope are discussed for K = 8. The Bio-NT-TFET source voltage (VS) is found to vary from −0.2 V to −1.2 V, and the gate voltage (VGS) varies from 0.2 V to 1 V. The variation in dielectric constant K (1, 2.1, 3.57, 8, 12, and 20) is also discussed. For bio-sensing applications, a cavity is introduced between the source region and the core source electrode region. K is defined as the dielectric constant of the material. For investigating the Bio-NT-TFET, biomolecules with different dielectric constant values (K), i.e., streptavidin (K = 2.1), (3-aminopropyl)triethoxysilane (K = 3.57), and protein (K = 8), are analyzed. To determine the bio-sensing capability, the cavity is filled with biomolecules at various fill rates: 100%, 75%, 50%, and 25% biomolecules, and no biomolecules (empty). To analyze the proposed Bio-NT-TFET, both positive biomolecules (+BM) and negative biomolecules (−BM) are taken into consideration. To analyze the efficiency of the Bio-NT-TFET, the ON current (ION), ION/IOFF current ratio (ION/IOFF), the effect of charged biomolecules (+BM/−BM), parametric analysis, and sensitivity are taken into consideration.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat V.T. Nguyen, Y.S. Kwon, and M.B. Gu, Curr. Opin. Biotechnol. 45, 15 (2017).CrossRef V.T. Nguyen, Y.S. Kwon, and M.B. Gu, Curr. Opin. Biotechnol. 45, 15 (2017).CrossRef
2.
Zurück zum Zitat J. Shin, S. Choi, J.-S. Yang, and A.I. Jung, Sens. Actuators, B Chem. 243, 221 (2017).CrossRef J. Shin, S. Choi, J.-S. Yang, and A.I. Jung, Sens. Actuators, B Chem. 243, 221 (2017).CrossRef
3.
Zurück zum Zitat B.D. Malhotra, S. Kumar, and C.M. Pandey, J. Phys: Conf. Ser. 704, 1 (2016). B.D. Malhotra, S. Kumar, and C.M. Pandey, J. Phys: Conf. Ser. 704, 1 (2016).
4.
Zurück zum Zitat S. Shreya, A.H. Khan, N. Kumar, S.I. Amin, and S. Anand, IEEE Sens. J. 20, 672 (2020).CrossRef S. Shreya, A.H. Khan, N. Kumar, S.I. Amin, and S. Anand, IEEE Sens. J. 20, 672 (2020).CrossRef
5.
Zurück zum Zitat T. Wadhera, D. Kakkar, G. Wadhwa, and B. Raj, J. Elec. Mater. 48, 7635 (2019).CrossRef T. Wadhera, D. Kakkar, G. Wadhwa, and B. Raj, J. Elec. Mater. 48, 7635 (2019).CrossRef
6.
Zurück zum Zitat S.K. Arya, A. Chaubey, and B.D. Malhotra, Proc. Indian Nat. Sci. Acad. 72, 249 (2006). S.K. Arya, A. Chaubey, and B.D. Malhotra, Proc. Indian Nat. Sci. Acad. 72, 249 (2006).
7.
Zurück zum Zitat C.S. Pundir, S. Lata, and V. Narwal, Biosens. Bioelectron. 117, 373 (2018).CrossRef C.S. Pundir, S. Lata, and V. Narwal, Biosens. Bioelectron. 117, 373 (2018).CrossRef
8.
Zurück zum Zitat D.J. Wouters, J. Colinge, and H.E. Maes, IEEE Trans. Electron Devices 37, 2022 (1990).CrossRef D.J. Wouters, J. Colinge, and H.E. Maes, IEEE Trans. Electron Devices 37, 2022 (1990).CrossRef
10.
Zurück zum Zitat T. Numata, and S. Takagi, IEEE Trans. Electron Devices 51, 2161 (2004).CrossRef T. Numata, and S. Takagi, IEEE Trans. Electron Devices 51, 2161 (2004).CrossRef
11.
Zurück zum Zitat S. Saurabh, and M.J. Kumar, Fundamentals of tunnel field-effect transistors (Boca Raton: CRC Press, 2016).CrossRef S. Saurabh, and M.J. Kumar, Fundamentals of tunnel field-effect transistors (Boca Raton: CRC Press, 2016).CrossRef
12.
Zurück zum Zitat W.Y. Choi, B.G. Park, J.D. Lee, and T.J.K. Liu, IEEE Electron Device Lett. 28, 743 (2007).CrossRef W.Y. Choi, B.G. Park, J.D. Lee, and T.J.K. Liu, IEEE Electron Device Lett. 28, 743 (2007).CrossRef
13.
Zurück zum Zitat A.K. Gupta, A. Raman, and N. Kumar, IEEE Trans. Electron Devices 66, 3506 (2019).CrossRef A.K. Gupta, A. Raman, and N. Kumar, IEEE Trans. Electron Devices 66, 3506 (2019).CrossRef
14.
Zurück zum Zitat A. Goel, S. Rewari, S. Verma, and R.S. Gupta, Appl. Phys. A 126, 1 (2020).CrossRef A. Goel, S. Rewari, S. Verma, and R.S. Gupta, Appl. Phys. A 126, 1 (2020).CrossRef
15.
Zurück zum Zitat A. Goel, S. Rewari, S. Verma, and R.S. Gupta, J. Electron. Mater. 50, 108 (2021).CrossRef A. Goel, S. Rewari, S. Verma, and R.S. Gupta, J. Electron. Mater. 50, 108 (2021).CrossRef
17.
18.
Zurück zum Zitat N. Kumar, and A. Raman, IEEE Trans. Electron Devices 66, 1468 (2019).CrossRef N. Kumar, and A. Raman, IEEE Trans. Electron Devices 66, 1468 (2019).CrossRef
19.
Zurück zum Zitat A. Goel, S. Rewari, S. Verma, and R.S. Gupta, AEU-Int. J. Electron. Commun. 111, 152924 (2019).CrossRef A. Goel, S. Rewari, S. Verma, and R.S. Gupta, AEU-Int. J. Electron. Commun. 111, 152924 (2019).CrossRef
20.
Zurück zum Zitat S. Sahoo, S. Dash and G. P. Mishra, Work-function modulated hetero gate charge plasma TFET to enhance the device performance. Devices for Integrated Circuit (DevIC), pp. 461– 464, (2019). S. Sahoo, S. Dash and G. P. Mishra, Work-function modulated hetero gate charge plasma TFET to enhance the device performance. Devices for Integrated Circuit (DevIC), pp. 461– 464, (2019).
21.
Zurück zum Zitat N. Kumar, S.I. Amin, and S. Anand, IEEE Trans. Electron Devices 67, 789 (2020).CrossRef N. Kumar, S.I. Amin, and S. Anand, IEEE Trans. Electron Devices 67, 789 (2020).CrossRef
22.
23.
Zurück zum Zitat Gupta, A.K. and Raman, A., Electrostatic-doped nanotube TFET: proposal, design, and investigation with linearity analysis. Silicon, pp.1-13, (2020) Gupta, A.K. and Raman, A., Electrostatic-doped nanotube TFET: proposal, design, and investigation with linearity analysis. Silicon, pp.1-13, (2020)
25.
Zurück zum Zitat S. Sahay, and M.J. Kumar, IEEE Trans. Electron Devices 64, 1851 (2017).CrossRef S. Sahay, and M.J. Kumar, IEEE Trans. Electron Devices 64, 1851 (2017).CrossRef
27.
Zurück zum Zitat N. Kumar, U. Mushtaq, S.I. Amin, and S. Anand, Superlattice. Microst. 125, 356 (2019).CrossRef N. Kumar, U. Mushtaq, S.I. Amin, and S. Anand, Superlattice. Microst. 125, 356 (2019).CrossRef
28.
Zurück zum Zitat ATLAS, User’s manual, version 5. SILVACO, Santa Clara, (2011) ATLAS, User’s manual, version 5. SILVACO, Santa Clara, (2011)
29.
Zurück zum Zitat M.K. Anvarifard, Z. Ramezani, I.S. Amiri, K. Tamersit, A.M. Nejad, and A.M. , J. Mater. Sci. Mater. Electr. 31, 22699 (2020).CrossRef M.K. Anvarifard, Z. Ramezani, I.S. Amiri, K. Tamersit, A.M. Nejad, and A.M. , J. Mater. Sci. Mater. Electr. 31, 22699 (2020).CrossRef
30.
31.
Zurück zum Zitat N. Jayaswal, A. Raman, N. Kumar, and S. Singh, Superlattices Microstruct. 125, 256 (2019).CrossRef N. Jayaswal, A. Raman, N. Kumar, and S. Singh, Superlattices Microstruct. 125, 256 (2019).CrossRef
32.
Zurück zum Zitat S. Anand, A. Singh, S.I. Amin, and A.S. Thool, IEEE Sens. J. 19, 4369 (2019).CrossRef S. Anand, A. Singh, S.I. Amin, and A.S. Thool, IEEE Sens. J. 19, 4369 (2019).CrossRef
33.
Zurück zum Zitat D. Cutaia, K. E. Moselund, M. Borg, H. Schmid, L. Gignac, C. Breslin, S. Karg, E. Uccelli, P. Nirmalraj, H. Riel, Fabrication and analysis of vertical p-type InAs-Si nanowire Tunnel FETs. In: EUROSOI-ULIS 2015, Joint International EUROSOI Workshop and International Conference on Ultimate Integration on Silicon, Bologna, 2015, pp. 61-64, (2015). D. Cutaia, K. E. Moselund, M. Borg, H. Schmid, L. Gignac, C. Breslin, S. Karg, E. Uccelli, P. Nirmalraj, H. Riel, Fabrication and analysis of vertical p-type InAs-Si nanowire Tunnel FETs. In: EUROSOI-ULIS 2015, Joint International EUROSOI Workshop and International Conference on Ultimate Integration on Silicon, Bologna, 2015, pp. 61-64, (2015).
Metadaten
Titel
Design, Investigation, and Sensitivity Analysis of a Biosensor Based on an Optimized Electrostatically Doped Nanotube TFET
verfasst von
Ashok Kumar Gupta
Ashish Raman
Publikationsdatum
06.07.2021
Verlag
Springer US
Erschienen in
Journal of Electronic Materials / Ausgabe 9/2021
Print ISSN: 0361-5235
Elektronische ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-021-09072-7

Weitere Artikel der Ausgabe 9/2021

Journal of Electronic Materials 9/2021 Zur Ausgabe

Neuer Inhalt