Skip to main content
Erschienen in: Experimental Mechanics 8/2017

19.05.2017

Design, Manufacture, and Quasi-Static Testing of Metallic Negative Stiffness Structures within a Polymer Matrix

verfasst von: S . Cortes, J. Allison, C. Morris, M. R. Haberman, C. C. Seepersad, D. Kovar

Erschienen in: Experimental Mechanics | Ausgabe 8/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A composite material system comprised of a monostable negative stiffness (NS) structure within a polymer matrix was designed, fabricated, and experimentally evaluated. The monostable negative stiffness (NS) structure was designed using a combination of analytical and numerical models and manufactured in stainless steel. The NS structure was arranged in parallel with different polymer matrices to experimentally evaluate the effects of the matrix properties on the overall stiffness and energy dissipation of the composite NS-matrix system when loaded in uniaxial compression. A strong influence of the matrix properties on the stiffness and energy absorption capacity of the composite system was observed. Unlike conventional composites for which there is a natural tradeoff between stiffness and energy absorption capacity, the composite NS-matrix system enhanced stiffness while simultaneously improving energy absorption relative to a neat matrix, but only when the stiffness of the matrix was carefully matched to the stiffness of the NS structure.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat I.L. Vér (editor), L.L. Beranek (editor) (2006) Chapter 8. Sound-Absorbing Materials and Sound Absorbers, K. Attenborough, L. Vér. Chapter 14, Structural Damping, E.E. Ungar, J.A. Zpfe, in Noise and Vibration Control Engineering, Hoboken, NJ, John Wiley & Sons, Inc. I.L. Vér (editor), L.L. Beranek (editor) (2006) Chapter 8. Sound-Absorbing Materials and Sound Absorbers, K. Attenborough, L. Vér. Chapter 14, Structural Damping, E.E. Ungar, J.A. Zpfe, in Noise and Vibration Control Engineering, Hoboken, NJ, John Wiley & Sons, Inc.
2.
Zurück zum Zitat Sun CT, Lu YP (1995) Vibration damping of structural elements. Prentice Hall, Englewood CliffMATH Sun CT, Lu YP (1995) Vibration damping of structural elements. Prentice Hall, Englewood CliffMATH
3.
Zurück zum Zitat Jarzynski J (1990) Chapter 10. Mechanisms of Sound attenuation in materials. In: Sound and vibration damping with polymers. American Chemical Society, Washington D.C., pp 116–207 Jarzynski J (1990) Chapter 10. Mechanisms of Sound attenuation in materials. In: Sound and vibration damping with polymers. American Chemical Society, Washington D.C., pp 116–207
4.
Zurück zum Zitat Dall’Astaa A, Ragnib L (2006) Experimental tests and analytical model of high damping rubber dissipating devices. Eng Struct 28:1874–1884CrossRef Dall’Astaa A, Ragnib L (2006) Experimental tests and analytical model of high damping rubber dissipating devices. Eng Struct 28:1874–1884CrossRef
5.
Zurück zum Zitat Chung DDL (2003) Structural composite materials tailored for damping. J Alloys Compd 355:216–223CrossRef Chung DDL (2003) Structural composite materials tailored for damping. J Alloys Compd 355:216–223CrossRef
6.
Zurück zum Zitat Zhao X, Yang J, Zhao D, Lu Y, Wang W, Zhang L, Nishi T (2015) Natural rubber/nitrile butadiene rubber/hindered phenol composites with high-damping properties. Intern J Smart Nano Mat 6(4):239–250CrossRef Zhao X, Yang J, Zhao D, Lu Y, Wang W, Zhang L, Nishi T (2015) Natural rubber/nitrile butadiene rubber/hindered phenol composites with high-damping properties. Intern J Smart Nano Mat 6(4):239–250CrossRef
7.
Zurück zum Zitat Byers L, Gandhi F (2009) Embedded absorbers for helicopter rotor lag damping. J Sound Vib 325:705–721CrossRef Byers L, Gandhi F (2009) Embedded absorbers for helicopter rotor lag damping. J Sound Vib 325:705–721CrossRef
8.
Zurück zum Zitat Gu HS, Itoh Y (2010) Ageing behaviour of natural rubber and high damping rubber materials used in bridge rubber bearings. Adv Struct Eng 13(6):1105–1113CrossRef Gu HS, Itoh Y (2010) Ageing behaviour of natural rubber and high damping rubber materials used in bridge rubber bearings. Adv Struct Eng 13(6):1105–1113CrossRef
9.
Zurück zum Zitat Rasuo B (2010) Experimental study of structural damping of composite helicopter blades with different cores. Plastics Rubber Comp 39(1):1–5CrossRef Rasuo B (2010) Experimental study of structural damping of composite helicopter blades with different cores. Plastics Rubber Comp 39(1):1–5CrossRef
10.
Zurück zum Zitat Kumar R, Kant R, Pandey S, Asfer M, Bhattacharya B, Panigrahi PK, Bhattacharya S (2013) Passive vibration damping using polymer pads with microchannel arrays. J Microelectromech Syst 22(3):695–707CrossRef Kumar R, Kant R, Pandey S, Asfer M, Bhattacharya B, Panigrahi PK, Bhattacharya S (2013) Passive vibration damping using polymer pads with microchannel arrays. J Microelectromech Syst 22(3):695–707CrossRef
12.
Zurück zum Zitat Lakes, R. S. (Eds) K. Golden, G. Grimmert, R. James, G. Milton, P. Sen, "Elastic freedom in cellular solids and composite materials in Mathematics of Multiscale Materials, NY, Springer, 1998, pp. 129–153. Lakes, R. S. (Eds) K. Golden, G. Grimmert, R. James, G. Milton, P. Sen, "Elastic freedom in cellular solids and composite materials in Mathematics of Multiscale Materials, NY, Springer, 1998, pp. 129–153.
13.
Zurück zum Zitat Lakes RS (2001) Extreme damping in composite materials with a negative stiffness phase. Phys Rev Lett 86(13):2897–2900CrossRef Lakes RS (2001) Extreme damping in composite materials with a negative stiffness phase. Phys Rev Lett 86(13):2897–2900CrossRef
14.
Zurück zum Zitat Wang YC, Ludwigson M, Lakes RS (2004) Deformation of extreme viscoelastic metals and composites. Mater Sci Eng 370:41–49CrossRef Wang YC, Ludwigson M, Lakes RS (2004) Deformation of extreme viscoelastic metals and composites. Mater Sci Eng 370:41–49CrossRef
15.
Zurück zum Zitat Callister WD, Rethwisch DG (2009) Materials science and engineering and introduction. Wiley, Hoboken Callister WD, Rethwisch DG (2009) Materials science and engineering and introduction. Wiley, Hoboken
16.
Zurück zum Zitat Qiu J, Lang JH, Slocum AH (2004) A curved-beam Bistable mechanism. J Microelectromech Syst 13(2):137–146CrossRef Qiu J, Lang JH, Slocum AH (2004) A curved-beam Bistable mechanism. J Microelectromech Syst 13(2):137–146CrossRef
17.
Zurück zum Zitat Lakes RS, Lee T, Bersie A, Wang YC (2001) Extreme damping in composite materials with negative stiffness inclusions. Nature 410:565–567CrossRef Lakes RS, Lee T, Bersie A, Wang YC (2001) Extreme damping in composite materials with negative stiffness inclusions. Nature 410:565–567CrossRef
18.
Zurück zum Zitat Vangbo M (1998) An analytical analysis of a compressed Bistable buckled beam. Sensors Actuators A Phys 69(3):212–216 Vangbo M (1998) An analytical analysis of a compressed Bistable buckled beam. Sensors Actuators A Phys 69(3):212–216
19.
Zurück zum Zitat Klatt T, Haberman MR (2013) A nonlinear negative stiffness metamaterial unit cell and small-on-large multiscale material model. J Appl Phys 114:033503 Klatt T, Haberman MR (2013) A nonlinear negative stiffness metamaterial unit cell and small-on-large multiscale material model. J Appl Phys 114:033503
20.
Zurück zum Zitat Alabuzhev P, Gritchin A, Kim L, Migirenko G, Chon V, Stepanov P (1989) Vibration protecting and measuring systems with quasi-zero stiffness. CRC Press, Hemisphere, New York Alabuzhev P, Gritchin A, Kim L, Migirenko G, Chon V, Stepanov P (1989) Vibration protecting and measuring systems with quasi-zero stiffness. CRC Press, Hemisphere, New York
21.
Zurück zum Zitat Balandin DV, Bolotnik NN, Pilkey WD (2001) Optimal protection from impact, shock, and vibration. Taylor and Francis, Philadelphia Balandin DV, Bolotnik NN, Pilkey WD (2001) Optimal protection from impact, shock, and vibration. Taylor and Francis, Philadelphia
22.
Zurück zum Zitat Kent RW, Balandin DV, Bolotnik NN, Pilkey WD, Purtsezov (2007) Optimal control of restraint forces in an automobile impact. J Dyn Syst Meas Control 129:415–424CrossRef Kent RW, Balandin DV, Bolotnik NN, Pilkey WD, Purtsezov (2007) Optimal control of restraint forces in an automobile impact. J Dyn Syst Meas Control 129:415–424CrossRef
23.
Zurück zum Zitat Platus DL (1999) Negative-stiffness-mechanism vibration isolation systems, in SPIE conference on current developments in vibration Control for Optomechanical systems. Vol. 3786, Denver Platus DL (1999) Negative-stiffness-mechanism vibration isolation systems, in SPIE conference on current developments in vibration Control for Optomechanical systems. Vol. 3786, Denver
24.
Zurück zum Zitat Fulcher BA, Shahan DW, Haberman MR, Seepersad CC, Wilson PS (2014) Analytical and Experimental investigation of buckled beams as negative stiffness elements for passive vibration and shock isolation systems. J Vib Acoust 136(031009):1–12 Fulcher BA, Shahan DW, Haberman MR, Seepersad CC, Wilson PS (2014) Analytical and Experimental investigation of buckled beams as negative stiffness elements for passive vibration and shock isolation systems. J Vib Acoust 136(031009):1–12
25.
Zurück zum Zitat Kashdan L, Seepersad C, Haberman M, Preston SW (2012) Design, fabrication, and evaluation of negative stiffness elements using SLS. Rapid Prototyp J 18:194–200CrossRef Kashdan L, Seepersad C, Haberman M, Preston SW (2012) Design, fabrication, and evaluation of negative stiffness elements using SLS. Rapid Prototyp J 18:194–200CrossRef
26.
Zurück zum Zitat Correa DM, Klatt T, Cortes S, Haberman M, Kovar D, Seepersad C (2015) Negative stiffness honeycombs for recoverable shock isolation. Rapid Prototyp J 21(2):193–200CrossRef Correa DM, Klatt T, Cortes S, Haberman M, Kovar D, Seepersad C (2015) Negative stiffness honeycombs for recoverable shock isolation. Rapid Prototyp J 21(2):193–200CrossRef
27.
Zurück zum Zitat Correa DM, Seepersad CC, Haberman MR (2015) Mechanical design of negative stiffness honeycomb materials. Integr Mat Manufac Innov 10(4):1–11 Correa DM, Seepersad CC, Haberman MR (2015) Mechanical design of negative stiffness honeycomb materials. Integr Mat Manufac Innov 10(4):1–11
28.
Zurück zum Zitat Shan S, Kang SH, Raney JR, Wang P, Fang L, Candido F, Lewis JA, Bertoldi K (2015) Multistable architected materials for trapping elastic strain energy. Adv Mater 27(29):4296–4301CrossRef Shan S, Kang SH, Raney JR, Wang P, Fang L, Candido F, Lewis JA, Bertoldi K (2015) Multistable architected materials for trapping elastic strain energy. Adv Mater 27(29):4296–4301CrossRef
29.
Zurück zum Zitat Rafsanjani A, Akbarzadeh A, Pasini D (2015) Snapping mechanical metamaterials under tension. Adv Mater 27(39):5931–5935CrossRef Rafsanjani A, Akbarzadeh A, Pasini D (2015) Snapping mechanical metamaterials under tension. Adv Mater 27(39):5931–5935CrossRef
30.
Zurück zum Zitat Pontecorvo ME, Barbarino S, Murray GJ, Gandhi FS (2012) Bistable arches for morphing applications. J Intell Mater Syst Struct 24(3):274–286CrossRef Pontecorvo ME, Barbarino S, Murray GJ, Gandhi FS (2012) Bistable arches for morphing applications. J Intell Mater Syst Struct 24(3):274–286CrossRef
31.
Zurück zum Zitat Harne RL, Wu Z, Wang KW (2016) Designing and harnessing the metastable states of a modular Metastructure for programmable mechanical properties adaptation. J Mech Des 138(2):1–9 Harne RL, Wu Z, Wang KW (2016) Designing and harnessing the metastable states of a modular Metastructure for programmable mechanical properties adaptation. J Mech Des 138(2):1–9
32.
Zurück zum Zitat Restrepo D, Mankame ND, Zavttieri P (2015) Phase transforming cellular materials. Ext Mech Lett 4:52–60CrossRef Restrepo D, Mankame ND, Zavttieri P (2015) Phase transforming cellular materials. Ext Mech Lett 4:52–60CrossRef
33.
Zurück zum Zitat Florijn B, Coulais C, van Hecke M (2014) Programmable Mechanical Metamaterials. Phys Rev Lett 113(17):175503CrossRef Florijn B, Coulais C, van Hecke M (2014) Programmable Mechanical Metamaterials. Phys Rev Lett 113(17):175503CrossRef
34.
Zurück zum Zitat Fritzen F, Kochmann DM (2014) Material instability-induced extreme damping in composites: a computational study. Int J S Struct 51:4101–4112CrossRef Fritzen F, Kochmann DM (2014) Material instability-induced extreme damping in composites: a computational study. Int J S Struct 51:4101–4112CrossRef
38.
Zurück zum Zitat Roland CM (2006) Mechanical behavior of rubber at high strain rates. Rubber Chem Technol 79:429–459 Roland CM (2006) Mechanical behavior of rubber at high strain rates. Rubber Chem Technol 79:429–459
Metadaten
Titel
Design, Manufacture, and Quasi-Static Testing of Metallic Negative Stiffness Structures within a Polymer Matrix
verfasst von
S . Cortes
J. Allison
C. Morris
M. R. Haberman
C. C. Seepersad
D. Kovar
Publikationsdatum
19.05.2017
Verlag
Springer US
Erschienen in
Experimental Mechanics / Ausgabe 8/2017
Print ISSN: 0014-4851
Elektronische ISSN: 1741-2765
DOI
https://doi.org/10.1007/s11340-017-0290-2

Weitere Artikel der Ausgabe 8/2017

Experimental Mechanics 8/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.