Skip to main content
Erschienen in: Structural and Multidisciplinary Optimization 2/2014

01.02.2014 | Research Paper

Design methodology of piezoelectric energy-harvesting skin using topology optimization

verfasst von: A. Takezawa, M. Kitamura, S.L. Vatanabe, E. C. N. Silva

Erschienen in: Structural and Multidisciplinary Optimization | Ausgabe 2/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper describes a design methodology for piezoelectric energy harvesters that thinly encapsulate the mechanical devices and exploit resonances from higher-order vibrational modes. The direction of polarization determines the sign of the piezoelectric tensor to avoid cancellations of electric fields from opposite polarizations in the same circuit. The resultant modified equations of state are solved by finite element method (FEM). Combining this method with the solid isotropic material with penalization (SIMP) method for piezoelectric material, we have developed an optimization methodology that optimizes the piezoelectric material layout and polarization direction. Updating the density function of the SIMP method is performed based on sensitivity analysis, the sequential linear programming on the early stage of the optimization, and the phase field method on the latter stage of the optimization to obtain clear optimal shapes without intermediate density. Numerical examples are provided that illustrate the validity and utility of the proposed method.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Allaire G (2001) Shape optimization by the homogenization method. Springer, New York Allaire G (2001) Shape optimization by the homogenization method. Springer, New York
Zurück zum Zitat Allaire G (2007) Conception optimale de structures. Springer, BerlinMATH Allaire G (2007) Conception optimale de structures. Springer, BerlinMATH
Zurück zum Zitat Allaire G, Jouve F, Toader AM (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194(1): 363–393CrossRefMATHMathSciNet Allaire G, Jouve F, Toader AM (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194(1): 363–393CrossRefMATHMathSciNet
Zurück zum Zitat Anton SR, Sodano HA (2007) A review of power harvesting using piezoelectric materials (2003–2006). Smart Mater Struct 16:R1CrossRef Anton SR, Sodano HA (2007) A review of power harvesting using piezoelectric materials (2003–2006). Smart Mater Struct 16:R1CrossRef
Zurück zum Zitat Beeby SP, Tudor MJ, White NM (2006) Energy harvesting vibration sources for microsystems applications. Meas Sci Technol 17:R175CrossRef Beeby SP, Tudor MJ, White NM (2006) Energy harvesting vibration sources for microsystems applications. Meas Sci Technol 17:R175CrossRef
Zurück zum Zitat Belytschko T, Liu WK, Moran B (2000) Nonlinear finite elements for continua and structures. Wiley, ChichesterMATH Belytschko T, Liu WK, Moran B (2000) Nonlinear finite elements for continua and structures. Wiley, ChichesterMATH
Zurück zum Zitat Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1(4):193–202CrossRef Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1(4):193–202CrossRef
Zurück zum Zitat Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224CrossRef Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224CrossRef
Zurück zum Zitat Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69(9):635–654 Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69(9):635–654
Zurück zum Zitat Bendsøe MP, Sigmund O (2003) Topology optimization: theory, methods, and applications. Springer, Berlin Bendsøe MP, Sigmund O (2003) Topology optimization: theory, methods, and applications. Springer, Berlin
Zurück zum Zitat Berlincourt DA, Curran DR, Jaffe H (1964) Piezoelectric and piezomagnetic materials and their function in transducers. In: Mason WP (ed) Physical acoustics, principle and methods, vol 1, Part A. Academic, New York, pp 169–270 Berlincourt DA, Curran DR, Jaffe H (1964) Piezoelectric and piezomagnetic materials and their function in transducers. In: Mason WP (ed) Physical acoustics, principle and methods, vol 1, Part A. Academic, New York, pp 169–270
Zurück zum Zitat Bourisli RI, Al-Ajmi MA (2010) Optimization of smart beams for maximum modal electromechanical coupling using genetic algorithms. J Intell Mater Syst Struct 21(9):907–914CrossRef Bourisli RI, Al-Ajmi MA (2010) Optimization of smart beams for maximum modal electromechanical coupling using genetic algorithms. J Intell Mater Syst Struct 21(9):907–914CrossRef
Zurück zum Zitat Bruns TE, Sigmund O, Tortorelli DA (2002) Numerical methods for the topology optimization of structures that exhibit snap-through. Int J Numer Meth Eng 55(10):1215–1237CrossRefMATH Bruns TE, Sigmund O, Tortorelli DA (2002) Numerical methods for the topology optimization of structures that exhibit snap-through. Int J Numer Meth Eng 55(10):1215–1237CrossRefMATH
Zurück zum Zitat Chen S, Gonella S, Chen W, Liu WK (2010) A level set approach for optimal design of smart energy harvesters. Comput Meth Appl Mech Eng 199(37–40):2532–2543CrossRefMATHMathSciNet Chen S, Gonella S, Chen W, Liu WK (2010) A level set approach for optimal design of smart energy harvesters. Comput Meth Appl Mech Eng 199(37–40):2532–2543CrossRefMATHMathSciNet
Zurück zum Zitat Cook-Chennault KA, Thambi N, Sastry AM (2008) Powering mems portable devices—a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems. Smart Mater Struct 17:043001CrossRef Cook-Chennault KA, Thambi N, Sastry AM (2008) Powering mems portable devices—a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems. Smart Mater Struct 17:043001CrossRef
Zurück zum Zitat duToit NE, Wardle BL, Kim SG (2005) Design considerations for mems-scale piezoelectric mechanical vibration energy harvesters. Integr Ferroelectr 71:121–160CrossRef duToit NE, Wardle BL, Kim SG (2005) Design considerations for mems-scale piezoelectric mechanical vibration energy harvesters. Integr Ferroelectr 71:121–160CrossRef
Zurück zum Zitat Erturk A, Inman DJ (2008a) A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters. J Vib Acoust 130:041002CrossRef Erturk A, Inman DJ (2008a) A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters. J Vib Acoust 130:041002CrossRef
Zurück zum Zitat Erturk A, Inman DJ (2008b) On mechanical modeling of cantilevered piezoelectric vibration energy harvesters. J Intell Mater Syst Struct 19(11):1311–1325CrossRef Erturk A, Inman DJ (2008b) On mechanical modeling of cantilevered piezoelectric vibration energy harvesters. J Intell Mater Syst Struct 19(11):1311–1325CrossRef
Zurück zum Zitat Erturk A, Tarazaga PA, Farmer JR, Inman DJ (2009) Effect of strain nodes and electrode configuration on piezoelectric energy harvesting from cantilevered beams. J Vib Acoust 131:011010CrossRef Erturk A, Tarazaga PA, Farmer JR, Inman DJ (2009) Effect of strain nodes and electrode configuration on piezoelectric energy harvesting from cantilevered beams. J Vib Acoust 131:011010CrossRef
Zurück zum Zitat Gonella S, To AC, Liu WK (2009) Interplay between phononic bandgaps and piezoelectric microstructures for energy harvesting. J Mech Phys Solid 57(3):621–633CrossRefMATH Gonella S, To AC, Liu WK (2009) Interplay between phononic bandgaps and piezoelectric microstructures for energy harvesting. J Mech Phys Solid 57(3):621–633CrossRefMATH
Zurück zum Zitat Kim JE, Kim DS, Ma PS, Kim YY (2010) Multi-physics interpolation for the topology optimization of piezoelectric systems. Comput Methods Appl Mech Eng 199(49–52):3153–3168CrossRefMATHMathSciNet Kim JE, Kim DS, Ma PS, Kim YY (2010) Multi-physics interpolation for the topology optimization of piezoelectric systems. Comput Methods Appl Mech Eng 199(49–52):3153–3168CrossRefMATHMathSciNet
Zurück zum Zitat Kim S, Clark WW, Wang QM (2005a) Piezoelectric energy harvesting with a clamped circular plate: analysis. J Intell Mater Syst Struct 16(10):847–854CrossRef Kim S, Clark WW, Wang QM (2005a) Piezoelectric energy harvesting with a clamped circular plate: analysis. J Intell Mater Syst Struct 16(10):847–854CrossRef
Zurück zum Zitat Kim S, Clark WW, Wang QM (2005b) Piezoelectric energy harvesting with a clamped circular plate: experimental study. J Intell Mater Syst Struct 16(10):855–863CrossRef Kim S, Clark WW, Wang QM (2005b) Piezoelectric energy harvesting with a clamped circular plate: experimental study. J Intell Mater Syst Struct 16(10):855–863CrossRef
Zurück zum Zitat Kögl M, Silva ECN (2005) Topology optimization of smart structures: design of piezoelectric plate and shell actuators. Smart Mater Struct 14:387–399CrossRef Kögl M, Silva ECN (2005) Topology optimization of smart structures: design of piezoelectric plate and shell actuators. Smart Mater Struct 14:387–399CrossRef
Zurück zum Zitat Landau LD, Pitaevskii LP, Lifshitz EM (1984) Electrodynamics of continuous media, 2nd edn. Butterworth-Heinemann, Oxford Landau LD, Pitaevskii LP, Lifshitz EM (1984) Electrodynamics of continuous media, 2nd edn. Butterworth-Heinemann, Oxford
Zurück zum Zitat Lee C, Xie J (2009) Design and optimization of wafer bonding packaged microelectromechanical systems thermoelectric power generators with heat dissipation path. J Vac Sci Technol B 27:1267–1271CrossRef Lee C, Xie J (2009) Design and optimization of wafer bonding packaged microelectromechanical systems thermoelectric power generators with heat dissipation path. J Vac Sci Technol B 27:1267–1271CrossRef
Zurück zum Zitat Lee S, Youn BD (2011) A new piezoelectric energy harvesting design concept: multimodal energy harvesting skin. IEEE Trans Ultrason Ferroelectr Freq Control 58(3):629–645CrossRef Lee S, Youn BD (2011) A new piezoelectric energy harvesting design concept: multimodal energy harvesting skin. IEEE Trans Ultrason Ferroelectr Freq Control 58(3):629–645CrossRef
Zurück zum Zitat Lee S, Youn BD, Jung BC (2009) Robust segment-type energy harvester and its application to a wireless sensor. Smart Mater Struct 18:095021CrossRef Lee S, Youn BD, Jung BC (2009) Robust segment-type energy harvester and its application to a wireless sensor. Smart Mater Struct 18:095021CrossRef
Zurück zum Zitat Makihara K, Onoda J, Miyakawa T (2006) Low energy dissipation electric circuit for energy harvesting. Smart Mater Struct 15:1493CrossRef Makihara K, Onoda J, Miyakawa T (2006) Low energy dissipation electric circuit for energy harvesting. Smart Mater Struct 15:1493CrossRef
Zurück zum Zitat Nakasone PH, Silva ECN (2010) Dynamic design of piezoelectric laminated sensors and actuators using topology optimization. J Intell Mater Syst Struct 21(16):1627–1652CrossRef Nakasone PH, Silva ECN (2010) Dynamic design of piezoelectric laminated sensors and actuators using topology optimization. J Intell Mater Syst Struct 21(16):1627–1652CrossRef
Zurück zum Zitat Priya S (2007) Advances in energy harvesting using low profile piezoelectric transducers. J Electroceram 19(1):167–184CrossRefMathSciNet Priya S (2007) Advances in energy harvesting using low profile piezoelectric transducers. J Electroceram 19(1):167–184CrossRefMathSciNet
Zurück zum Zitat Roundy S, Wright PK, Rabaey J (2003) A study of low level vibrations as a power source for wireless sensor nodes. Comput Comm 26(11):1131–1144CrossRef Roundy S, Wright PK, Rabaey J (2003) A study of low level vibrations as a power source for wireless sensor nodes. Comput Comm 26(11):1131–1144CrossRef
Zurück zum Zitat Rupp CJ, Evgrafov A, Maute K, Dunn ML (2009) Design of piezoelectric energy harvesting systems: a topology optimization approach based on multilayer plates and shells. J Intell Mater Syst Struct 20(16):1923–1939CrossRef Rupp CJ, Evgrafov A, Maute K, Dunn ML (2009) Design of piezoelectric energy harvesting systems: a topology optimization approach based on multilayer plates and shells. J Intell Mater Syst Struct 20(16):1923–1939CrossRef
Zurück zum Zitat Sodano HA, Inman DJ, Park G (2004) A review of power harvesting from vibration using piezoelectric materials. Shock Vib Dig 36(3):197–206CrossRef Sodano HA, Inman DJ, Park G (2004) A review of power harvesting from vibration using piezoelectric materials. Shock Vib Dig 36(3):197–206CrossRef
Zurück zum Zitat Sun KH, Kim YY (2010) Layout design optimization for magneto-electro-elastic laminate composites for maximized energy conversion under mechanical loading. Smart Mater Struct 19:055008CrossRef Sun KH, Kim YY (2010) Layout design optimization for magneto-electro-elastic laminate composites for maximized energy conversion under mechanical loading. Smart Mater Struct 19:055008CrossRef
Zurück zum Zitat Tadesse Y, Zhang S, Priya S (2009) Multimodal energy harvesting system: piezoelectric and electromagnetic. J Intell Mater Syst Struct 20(5):625–623CrossRef Tadesse Y, Zhang S, Priya S (2009) Multimodal energy harvesting system: piezoelectric and electromagnetic. J Intell Mater Syst Struct 20(5):625–623CrossRef
Zurück zum Zitat Takezawa A, Nishiwaki S, Kitamura M (2010) Shape and topology optimization based on the phasefield method and sensitivity analysis. J Comput Phys 229(7):2697–2718CrossRefMATHMathSciNet Takezawa A, Nishiwaki S, Kitamura M (2010) Shape and topology optimization based on the phasefield method and sensitivity analysis. J Comput Phys 229(7):2697–2718CrossRefMATHMathSciNet
Zurück zum Zitat Wang MY, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192(1–2):227–246CrossRefMATH Wang MY, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192(1–2):227–246CrossRefMATH
Zurück zum Zitat Warren JA, Kobayashi R, Lobkovsky AE, Craig Carter W (2003) Extending phase field models of solidification to polycrystalline materials. Acta Mater 51(20):6035–6058CrossRef Warren JA, Kobayashi R, Lobkovsky AE, Craig Carter W (2003) Extending phase field models of solidification to polycrystalline materials. Acta Mater 51(20):6035–6058CrossRef
Zurück zum Zitat Zheng B, Chang CJ, Gea HC (2009) Topology optimization of energy harvesting devices using piezoelectric materials. Struct Multidiscip Optim 38(1):17–23CrossRef Zheng B, Chang CJ, Gea HC (2009) Topology optimization of energy harvesting devices using piezoelectric materials. Struct Multidiscip Optim 38(1):17–23CrossRef
Zurück zum Zitat Zhou M, Rozvany GIN (1991) The coc algorithm. II: topological, geometrical and generalized shape optimization. Comput Methods Appl Mech Eng 89(1–3):309–336CrossRef Zhou M, Rozvany GIN (1991) The coc algorithm. II: topological, geometrical and generalized shape optimization. Comput Methods Appl Mech Eng 89(1–3):309–336CrossRef
Metadaten
Titel
Design methodology of piezoelectric energy-harvesting skin using topology optimization
verfasst von
A. Takezawa
M. Kitamura
S.L. Vatanabe
E. C. N. Silva
Publikationsdatum
01.02.2014
Verlag
Springer Berlin Heidelberg
Erschienen in
Structural and Multidisciplinary Optimization / Ausgabe 2/2014
Print ISSN: 1615-147X
Elektronische ISSN: 1615-1488
DOI
https://doi.org/10.1007/s00158-013-0974-x

Weitere Artikel der Ausgabe 2/2014

Structural and Multidisciplinary Optimization 2/2014 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.