Skip to main content

2023 | OriginalPaper | Buchkapitel

53. Design of Artificial Intelligence-Based Products: Barriers and Enablers

verfasst von : Santosh Jagtap, Prashant Goswami

Erschienen in: Design in the Era of Industry 4.0, Volume 3

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Artificial Intelligence (AI) embodied products are becoming ubiquitous in the modern world. Organizations are hence updating themselves to design and develop such products. In this paper, we aim at identifying enablers and barriers in designing such products across several sectors. Our analysis of a broad range of literature in this field allowed us to identify these enablers and barriers. We have developed SOTCUT and SEECUT models representing these enablers and barriers. We have discussed implication of the findings for the practice of designing AI-embodied products.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Abduljabbar, R., Dia, H., Liyanage, S., Bagloee, S.A.: Applications of artificial intelligence in transport: an overview. Sustainability 11(1), 189 (2019)CrossRef Abduljabbar, R., Dia, H., Liyanage, S., Bagloee, S.A.: Applications of artificial intelligence in transport: an overview. Sustainability 11(1), 189 (2019)CrossRef
2.
Zurück zum Zitat Allam, Z., Dhunny, Z.A.: On big data, artificial intelligence and smart cities. Cities 1(89), 80–91 (2019)CrossRef Allam, Z., Dhunny, Z.A.: On big data, artificial intelligence and smart cities. Cities 1(89), 80–91 (2019)CrossRef
3.
Zurück zum Zitat Balthazar, P., Harri, P., Prater, A., Safdar, N.M.: Protecting your patients’ interests in the era of big data, artificial intelligence, and predictive analytics. J. Am. Coll. Radiol. 15(3), 580–586 (2018)CrossRef Balthazar, P., Harri, P., Prater, A., Safdar, N.M.: Protecting your patients’ interests in the era of big data, artificial intelligence, and predictive analytics. J. Am. Coll. Radiol. 15(3), 580–586 (2018)CrossRef
4.
Zurück zum Zitat Char, D.S., Shah, N.H., Magnus, D.: Implementing machine learning in health care’ addressing ethical challenges. N. Engl. J. Med. 378(11), 981–983 (2018)CrossRef Char, D.S., Shah, N.H., Magnus, D.: Implementing machine learning in health care’ addressing ethical challenges. N. Engl. J. Med. 378(11), 981–983 (2018)CrossRef
5.
Zurück zum Zitat Crawford, K., Whittaker, M., Elish, M.C., Barocas, S., Plasek, A., Ferryman, K.: The AI now report. In: The Social and Economic Implications of Artificial Intelligence Technologies in the Near-Term, 2016 Crawford, K., Whittaker, M., Elish, M.C., Barocas, S., Plasek, A., Ferryman, K.: The AI now report. In: The Social and Economic Implications of Artificial Intelligence Technologies in the Near-Term, 2016
6.
Zurück zum Zitat Cross, N.: Engineering Design Methods: Strategies for Product Design. John Wiley & Sons (2021) Cross, N.: Engineering Design Methods: Strategies for Product Design. John Wiley & Sons (2021)
7.
8.
Zurück zum Zitat Duan, Y., Edwards, J.S., Dwivedi, Y.K.: Artificial intelligence for decision making in the era of Big Data–evolution, challenges and research agenda. Int. J. Inf. Manage. 1(48), 63–71 (2019)CrossRef Duan, Y., Edwards, J.S., Dwivedi, Y.K.: Artificial intelligence for decision making in the era of Big Data–evolution, challenges and research agenda. Int. J. Inf. Manage. 1(48), 63–71 (2019)CrossRef
9.
Zurück zum Zitat Dwivedi, Y.K., Hughes, L., Ismagilova, E., Aarts, G., Coombs, C., Crick, T., et al.: Artificial Intelligence (AI): multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. Int. J. Inf. Manage. 101994 (2019) Dwivedi, Y.K., Hughes, L., Ismagilova, E., Aarts, G., Coombs, C., Crick, T., et al.: Artificial Intelligence (AI): multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. Int. J. Inf. Manage. 101994 (2019)
10.
Zurück zum Zitat Edwards, J.S., Duan, Y., Robins, P.: An analysis of expert systems for business decision making at different levels and in different roles. Eur. J. Inf. Syst. 9(1), 36–46 (2000)CrossRef Edwards, J.S., Duan, Y., Robins, P.: An analysis of expert systems for business decision making at different levels and in different roles. Eur. J. Inf. Syst. 9(1), 36–46 (2000)CrossRef
11.
Zurück zum Zitat Eppinger, S., Ulrich, K.: Product Design and Development. McGraw-Hill Higher Education (2015) Eppinger, S., Ulrich, K.: Product Design and Development. McGraw-Hill Higher Education (2015)
12.
Zurück zum Zitat Fry, H.: Hello World: How to be Human in the Age of the Machine. Transworld Publishers, London, UK (2018) Fry, H.: Hello World: How to be Human in the Age of the Machine. Transworld Publishers, London, UK (2018)
13.
Zurück zum Zitat Hamet, P., Tremblay, J.: Artificial intelligence in medicine. Metabolism 1(69), S36-40 (2017)CrossRef Hamet, P., Tremblay, J.: Artificial intelligence in medicine. Metabolism 1(69), S36-40 (2017)CrossRef
14.
Zurück zum Zitat Jha, S.K., Bilalovic, J., Jha, A., Patel, N., Zhang, H.: Renewable energy: present research and future scope of artificial intelligence. Renew. Sustain. Energy Rev. 77, 297–317 (2017)CrossRef Jha, S.K., Bilalovic, J., Jha, A., Patel, N., Zhang, H.: Renewable energy: present research and future scope of artificial intelligence. Renew. Sustain. Energy Rev. 77, 297–317 (2017)CrossRef
15.
Zurück zum Zitat Kaplan, A., Haenlein, M.: Siri, Siri, in my hand: who’s the fairest in the land? On the interpretations, illustrations, and implications of artificial intelligence. Bus. Horiz. 62(1), 15–25 (2019)CrossRef Kaplan, A., Haenlein, M.: Siri, Siri, in my hand: who’s the fairest in the land? On the interpretations, illustrations, and implications of artificial intelligence. Bus. Horiz. 62(1), 15–25 (2019)CrossRef
16.
Zurück zum Zitat Li, B.H., Hou, B.C., Yu, W.T., Lu, X.B., Yang, C.W.: Applications of artificial intelligence in intelligent manufacturing: a review. Frontiers Inf. Technol. Electronic Eng. 18(1), 86–96 (2017)CrossRef Li, B.H., Hou, B.C., Yu, W.T., Lu, X.B., Yang, C.W.: Applications of artificial intelligence in intelligent manufacturing: a review. Frontiers Inf. Technol. Electronic Eng. 18(1), 86–96 (2017)CrossRef
17.
Zurück zum Zitat Mikhaylov, S.J., Esteve, M., Campion, A.: Artificial intelligence for the public sector: opportunities and challenges of cross-sector collaboration. Philos. Trans. Royal Soc. A: Math. Phys. Eng. Sci. 376(2128) (2018) Mikhaylov, S.J., Esteve, M., Campion, A.: Artificial intelligence for the public sector: opportunities and challenges of cross-sector collaboration. Philos. Trans. Royal Soc. A: Math. Phys. Eng. Sci. 376(2128) (2018)
18.
19.
Zurück zum Zitat Muhuri, P.K., Shukla, A.K., Abraham, A.: Industry 4.0: a bibliometric analysis and detailed overview. Eng. Appl. Artif. Intell. 78, 218–235 (2019)CrossRef Muhuri, P.K., Shukla, A.K., Abraham, A.: Industry 4.0: a bibliometric analysis and detailed overview. Eng. Appl. Artif. Intell. 78, 218–235 (2019)CrossRef
20.
Zurück zum Zitat Nishant, R., Kennedy, M., Corbett, J.: Artificial intelligence for sustainability: challenges, opportunities, and a research agenda. Int. J. Inf. Manage. 1(53), 102104 (2020)CrossRef Nishant, R., Kennedy, M., Corbett, J.: Artificial intelligence for sustainability: challenges, opportunities, and a research agenda. Int. J. Inf. Manage. 1(53), 102104 (2020)CrossRef
21.
Zurück zum Zitat Parveen, R.: Artificial intelligence in construction industry: legal issues and regulatory challenges. Int. J. Civil Eng. Technol. 9(13), 957–962 (2018) Parveen, R.: Artificial intelligence in construction industry: legal issues and regulatory challenges. Int. J. Civil Eng. Technol. 9(13), 957–962 (2018)
22.
Zurück zum Zitat Pinto dos Santos, D., Giese, D., Brodehl, S., et al.: Medical students’ attitude towards artificial intelligence: a multicentre survey. Eur. Radiol. 29(4), 1640–1646 (2019)CrossRef Pinto dos Santos, D., Giese, D., Brodehl, S., et al.: Medical students’ attitude towards artificial intelligence: a multicentre survey. Eur. Radiol. 29(4), 1640–1646 (2019)CrossRef
23.
Zurück zum Zitat Recht, M.P., Dewey, M., Dreyer, K., Curtis, L., Wiro, N., Prainsack, B., Smith, J.J.: Integrating artificial intelligence into the clinical practice of radiology: challenges and recommendations. Eur. Radiol. 30(6), 3576–3584 (2020)CrossRef Recht, M.P., Dewey, M., Dreyer, K., Curtis, L., Wiro, N., Prainsack, B., Smith, J.J.: Integrating artificial intelligence into the clinical practice of radiology: challenges and recommendations. Eur. Radiol. 30(6), 3576–3584 (2020)CrossRef
24.
Zurück zum Zitat Rosenholm, L., Goswami, P., Jagtap, S.: Design of (semi-)autonomous vehicles: perceptions of the people in Sweden. Proc. Des. Soc. 2, 1719–1726 (2022) Rosenholm, L., Goswami, P., Jagtap, S.: Design of (semi-)autonomous vehicles: perceptions of the people in Sweden. Proc. Des. Soc. 2, 1719–1726 (2022)
25.
Zurück zum Zitat Rubin, D.L.: Artificial intelligence in imaging: the radiologist’s role. J. Am. Coll. Radiol. 16(9), 1309–1317 (2019)CrossRef Rubin, D.L.: Artificial intelligence in imaging: the radiologist’s role. J. Am. Coll. Radiol. 16(9), 1309–1317 (2019)CrossRef
26.
Zurück zum Zitat Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, Global Edition 4th. Foundations, 19, 23 (2021) Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, Global Edition 4th. Foundations, 19, 23 (2021)
27.
Zurück zum Zitat Schönberger, D.: Artificial intelligence in healthcare: a critical analysis of the legal and ethical implications. Int. J. Law Info Tech. 27(2), 171–203 (2019) Schönberger, D.: Artificial intelligence in healthcare: a critical analysis of the legal and ethical implications. Int. J. Law Info Tech. 27(2), 171–203 (2019)
28.
Zurück zum Zitat Strohm, L., Hehakaya, C., Ranschaert, E.R., Boon, W.P., Moors, E.H.: Implementation of artificial intelligence (AI) applications in radiology: hindering and facilitating factors. Eur. Radiol. 30, 5525–5532 (2020)CrossRef Strohm, L., Hehakaya, C., Ranschaert, E.R., Boon, W.P., Moors, E.H.: Implementation of artificial intelligence (AI) applications in radiology: hindering and facilitating factors. Eur. Radiol. 30, 5525–5532 (2020)CrossRef
29.
Zurück zum Zitat Tajmir, S.H., Alkasab, T.K.: Toward augmented radiologists: changes in radiology education in the era of machine learning and artificial intelligence. Acad. Radiol. 25(6), 747–750 (2018)CrossRef Tajmir, S.H., Alkasab, T.K.: Toward augmented radiologists: changes in radiology education in the era of machine learning and artificial intelligence. Acad. Radiol. 25(6), 747–750 (2018)CrossRef
30.
Zurück zum Zitat Waltz, D.L.: Artificial Intelligence: realizing the ultimate promises of computing. AI Mag. 18(3):49- (1997) Waltz, D.L.: Artificial Intelligence: realizing the ultimate promises of computing. AI Mag. 18(3):49- (1997)
31.
Zurück zum Zitat Wei, L.: AI-Design: architectural intelligent design approaches based on AI. In: DEStech Transactions on Engineering and Technology Research ICAEN (2018) Wei, L.: AI-Design: architectural intelligent design approaches based on AI. In: DEStech Transactions on Engineering and Technology Research ICAEN (2018)
32.
Zurück zum Zitat Wood, M.J., Teneholtz, N.A., Geis, J.R., Michalski, M.H., Andriole, K.P.: The need for a machine learning curriculum for radiologists. J. Am. Coll. Radiol. 16(5), 740–742 (2019)CrossRef Wood, M.J., Teneholtz, N.A., Geis, J.R., Michalski, M.H., Andriole, K.P.: The need for a machine learning curriculum for radiologists. J. Am. Coll. Radiol. 16(5), 740–742 (2019)CrossRef
33.
Zurück zum Zitat Zech, J.R., Badgeley, M.A., Liu, M., Costa, A.B., Titano, J.J., Oermann: Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: a cross-sectional study. PLoS Med. 15(11), 1002683 (2018) Zech, J.R., Badgeley, M.A., Liu, M., Costa, A.B., Titano, J.J., Oermann: Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: a cross-sectional study. PLoS Med. 15(11), 1002683 (2018)
Metadaten
Titel
Design of Artificial Intelligence-Based Products: Barriers and Enablers
verfasst von
Santosh Jagtap
Prashant Goswami
Copyright-Jahr
2023
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-99-0428-0_53

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.