Skip to main content

2016 | OriginalPaper | Buchkapitel

40. Design of Detection Systems

verfasst von : Robert P. Schifiliti, Richard L. P. Custer, Brian J. Meacham

Erschienen in: SFPE Handbook of Fire Protection Engineering

Verlag: Springer New York

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Fire detection and alarm systems are recognized as key features of a building’s fire prevention and protection strategy. This chapter presents a systematic technique to be used by fire protection engineers in the design and analysis of detection and alarm systems. The majority of discussion is directed toward systems used in buildings. However, many of the techniques and procedures also apply to systems used to protect planes, ships, outside storage yards, and other nonbuilding environments.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Glossar
α
Fire intensity coefficient (Btu/s3 or kW/s2)
A
Area (m2 or ft2)
A
g/(C p T a ρ0) [m4/(s2⋅kJ) or ft4/(s2⋅Btu)]
c
Specific heat of detector element [Btu/(lbm⋅R) or kJ/(kg⋅K)]
C p
Specific heat of air [Btu/(lbm⋅R) or kJ/(kg⋅K)]
d
Diameter of sphere or cylinder (m or ft)
D
Nondimensional change in gas temperature
Δt
Change in time (s)
ΔT
Increase above ambient in temperature of gas surrounding a detector (°C or °F)
ΔT d
Increase above ambient in temperature of adetector (°C or °F)
ΔT p *
Change in reduced gas temperature
f
Functional relationship
g
Functional relationship
g
Gravitational constant (m/s2 or ft/s2)
h c
Convective heat transfer coefficient [kW/(m2⋅°C) or Btu/(ft2⋅s⋅°F)]
H
Ceiling height or height above fire (m or ft)
ΔH c
Heat of combustion (kJ/mol)
H f
Heat of formation (kJ/mol)
L p
Sound pressure level
L W
Sound power level
m
Mass (lbm or kg)
p
Positive exponent
\( \dot{q} \)
Heat release rate (Btu/s or kW)
\( {\dot{\boldsymbol{q}}}_{\mathbf{cond}} \)
Heat transferred by conduction (Btu/s or kW)
\( {\dot{\boldsymbol{q}}}_{\mathbf{conv}} \)
Heat transferred by convection (Btu/s or kW)
\( {\dot{\boldsymbol{q}}}_{\mathbf{rad}} \)
Heat transferred by radiation (Btu/s or kW)
\( {\dot{\boldsymbol{q}}}_{\mathbf{total}} \)
Total heat transfer (Btu/s or kW)
\( \dot{\boldsymbol{Q}} \)
Heat release rate (Btu/s or kW)
\( {\dot{\boldsymbol{Q}}}_{\boldsymbol{cr}} \)
Critical heat release rate
\( {\dot{\boldsymbol{Q}}}_{\boldsymbol{do}} \)
Design heat release rate
\( {\dot{\boldsymbol{Q}}}_{\boldsymbol{i}} \)
Ideal heat release rate
\( {\dot{\boldsymbol{Q}}}_{\boldsymbol{p}} \)
Predicted heat release rate (Btu/s or kW)
\( {\dot{\boldsymbol{Q}}}_{\boldsymbol{T}} \)
Threshold heat release rate at response (Btu/s or kW)
r
Radial distance from fire plume axis (m or ft)
ρ0
Density of ambient air (kg/m3 or lb/ft3)
Re
Reynolds number
RTI
Response time index (m1/2⋅s1/2 or ft1/2⋅s1/2)
S
Spacing of detectors or sprinkler heads (m or ft)
t
Time (s)
t c
Critical time—time at which fire would reach a heat release rate of 1000 Btu/s (1055 kW) (s)
t r
Response time (s)
t v
Virtual time of origin (s)
t 2f
Arrival time of heat front (for p = 2 power-law fire) at a point r/H (s)
t 2f *
Reduced arrival time of heat front (for p = 2 power-law fire) at a point r/H (s)
t p *
Reduced time
T
Temperature (°C or °F)
T a
Ambient temperature (°C or °F)
T d
Detector temperature (°C or °F)
T g
Temperature of fire gases (°C or °F)
T s
Rated operating temperature of a detector or sprinkler (°C or °F)
U
Velocity (m/s)
u
Instantaneous velocity of fire gases (m/s or ft/s)
u 0
Velocity at which τ0 was measured (m/s or ft/s)
u p *
Reduced gas velocity
v
Kinematic viscosity (m2/s or ft2/s)
x
Vectorial observation point (m or ft)
Y
Defined in Equation 40.26
τ
Detector time constant—mc/(hA) (s)
τ0
Measured at reference velocity u0 (s)
Literatur
1.
Zurück zum Zitat C. Mulliss and W. Lee, “On the Standard Rounding Rule for Multiplication and Division,” Chinese Journal of Physics, 36, 3, pp. 479–487 (1998). C. Mulliss and W. Lee, “On the Standard Rounding Rule for Multiplication and Division,” Chinese Journal of Physics, 36, 3, pp. 479–487 (1998).
2.
Zurück zum Zitat W. Lee, C. Mulliss, and H.-C. Chiu, “On the Standard Rounding Rule for Addition and Subtraction,” Chinese Journal of Physics, 38, 1, pp. 36–41 (2000). W. Lee, C. Mulliss, and H.-C. Chiu, “On the Standard Rounding Rule for Addition and Subtraction,” Chinese Journal of Physics, 38, 1, pp. 36–41 (2000).
3.
Zurück zum Zitat R. Custer, “Selection and Specification of the ‘Design Fire’ for Performance-Based Fire Protection Design,” in Proceedings, SFPE Engineering Seminar, Phoenix, AZ, Society of Fire Protection Engineers, Boston (1993). R. Custer, “Selection and Specification of the ‘Design Fire’ for Performance-Based Fire Protection Design,” in Proceedings, SFPE Engineering Seminar, Phoenix, AZ, Society of Fire Protection Engineers, Boston (1993).
4.
Zurück zum Zitat R. Custer, B. Meacham, and C. Wood, “Performance-Based Design Techniques for Detection and Special Suppression Applications,” in Proceedings of the SFPE Engineering Seminars on Advances in Detection and Suppression Technology, San Francisco, Society of Fire Protection Engineers, Boston (1994). R. Custer, B. Meacham, and C. Wood, “Performance-Based Design Techniques for Detection and Special Suppression Applications,” in Proceedings of the SFPE Engineering Seminars on Advances in Detection and Suppression Technology, San Francisco, Society of Fire Protection Engineers, Boston (1994).
5.
Zurück zum Zitat SFPE Engineering Guide to Performance-Based Fire Protection, Society of Fire Protection Engineers, National Fire Protection Association, Quincy, MA (2000). SFPE Engineering Guide to Performance-Based Fire Protection, Society of Fire Protection Engineers, National Fire Protection Association, Quincy, MA (2000).
6.
Zurück zum Zitat R. Custer and R. Bright, “Fire Detection: The State-of-the-Art,” NBS Tech. Note 839, National Bureau of Standards, Washington, DC (1974). R. Custer and R. Bright, “Fire Detection: The State-of-the-Art,” NBS Tech. Note 839, National Bureau of Standards, Washington, DC (1974).
7.
Zurück zum Zitat UL 521, Standard for Safety Heat Detectors for Fire Protective Signaling Systems, Underwriters Laboratories Inc., Northbrook, IL (1993). UL 521, Standard for Safety Heat Detectors for Fire Protective Signaling Systems, Underwriters Laboratories Inc., Northbrook, IL (1993).
8.
Zurück zum Zitat NFPA 72®, National Fire Alarm Code®, National Fire Protection Association, Quincy, MA (2007). NFPA 72®, National Fire Alarm Code®, National Fire Protection Association, Quincy, MA (2007).
9.
Zurück zum Zitat G. Heskestad and H. Smith, FMRC Serial Number 22485, Factory Mutual Research Corp., Norwood, MA (1976). G. Heskestad and H. Smith, FMRC Serial Number 22485, Factory Mutual Research Corp., Norwood, MA (1976).
10.
Zurück zum Zitat J.P. Hollman, Heat Transfer, McGraw-Hill, New York (1976). J.P. Hollman, Heat Transfer, McGraw-Hill, New York (1976).
11.
Zurück zum Zitat W. Bissell, “An Investigation into the Use of the Factory Mutual Plunge Tunnel and the Resulting RTI for Fixed Temperature Fire Detectors,” Master’s Thesis, Worcester Polytechnic Institute, Worcester, MA (1988). W. Bissell, “An Investigation into the Use of the Factory Mutual Plunge Tunnel and the Resulting RTI for Fixed Temperature Fire Detectors,” Master’s Thesis, Worcester Polytechnic Institute, Worcester, MA (1988).
12.
Zurück zum Zitat M. Kokkala, “Thermal Properties of Heat Detectors and Sprinklers,” Nordtest Brand Symposium, Boras, Sweden (1986). M. Kokkala, “Thermal Properties of Heat Detectors and Sprinklers,” Nordtest Brand Symposium, Boras, Sweden (1986).
13.
Zurück zum Zitat R.P. Schifiliti and W.E. Pucci, “Fire Detection Modeling: State of the Art,” The Fire Detection Institute, Bloomfield, CT (1996). R.P. Schifiliti and W.E. Pucci, “Fire Detection Modeling: State of the Art,” The Fire Detection Institute, Bloomfield, CT (1996).
14.
Zurück zum Zitat “Discussion of a New Principle in Fire Detection, Rate Compensation,” Fenwal, Inc., Ashland, MA (1951). “Discussion of a New Principle in Fire Detection, Rate Compensation,” Fenwal, Inc., Ashland, MA (1951).
15.
Zurück zum Zitat C. E. Marrion, “Lag Time Modeling and Effects of Ceiling Jet Velocity on the Placement of Optical Smoke Detectors,” Master’s Thesis, Worcester Polytechnic Institute, Center for Firesafety Studies, Worcester, MA (1989). C. E. Marrion, “Lag Time Modeling and Effects of Ceiling Jet Velocity on the Placement of Optical Smoke Detectors,” Master’s Thesis, Worcester Polytechnic Institute, Center for Firesafety Studies, Worcester, MA (1989).
16.
Zurück zum Zitat R. Alpert, Fire Technology, 8, p. 3 (1972). R. Alpert, Fire Technology, 8, p. 3 (1972).
17.
Zurück zum Zitat L.Y. Cooper, “Interaction of an Isolated Sprinkler and a Two Layer Compartment Fire Environment,” National Institute of Standards and Technology, Gaithersburg, MD (1991).CrossRef L.Y. Cooper, “Interaction of an Isolated Sprinkler and a Two Layer Compartment Fire Environment,” National Institute of Standards and Technology, Gaithersburg, MD (1991).CrossRef
18.
Zurück zum Zitat M. Delichatsios and R. L. Alpert, “Calculated Interaction of Water Droplet Sprays with Fire Plumes in Compartments,” NBS-GCR 86-520, Center for Fire Research, National Bureau of Standards, Washington, DC (1986). M. Delichatsios and R. L. Alpert, “Calculated Interaction of Water Droplet Sprays with Fire Plumes in Compartments,” NBS-GCR 86-520, Center for Fire Research, National Bureau of Standards, Washington, DC (1986).
19.
Zurück zum Zitat G. Heskestad, “Sprinkler/Hot Layer Interaction,” NIST-GCR 91-590, National Institute of Standards and Technology, Gaithersburg, MD (1991). G. Heskestad, “Sprinkler/Hot Layer Interaction,” NIST-GCR 91-590, National Institute of Standards and Technology, Gaithersburg, MD (1991).
20.
Zurück zum Zitat D.D. Evans and D.W. Stroup, “Methods to Calculate the Response Time of Heat and Smoke Detectors Installed Below Large Unobstructed Ceilings,” NBSIR 85-3167, National Bureau of Standards, Gaithersburg, MD (1985). D.D. Evans and D.W. Stroup, “Methods to Calculate the Response Time of Heat and Smoke Detectors Installed Below Large Unobstructed Ceilings,” NBSIR 85-3167, National Bureau of Standards, Gaithersburg, MD (1985).
21.
Zurück zum Zitat G. Heskestad and M.A. Delichatsios, “The Initial Convective Flow in Fire,” 17th Symposium on Combustion, Combustion Institute, Pittsburgh, PA (1978). G. Heskestad and M.A. Delichatsios, “The Initial Convective Flow in Fire,” 17th Symposium on Combustion, Combustion Institute, Pittsburgh, PA (1978).
22.
Zurück zum Zitat G. Heskestad and M.A. Delichatsios, “Environments of Fire Detectors—Phase I: Effect of Fire Size, Ceiling Height, and Material,” Volume I: “Measurements” (NBS-GCR-77-86), (1977), Volume II: “Analysis” (NBS-GCR-77-95), National Technical Information Service (NTIS), Springfield, VA (1977). G. Heskestad and M.A. Delichatsios, “Environments of Fire Detectors—Phase I: Effect of Fire Size, Ceiling Height, and Material,” Volume I: “Measurements” (NBS-GCR-77-86), (1977), Volume II: “Analysis” (NBS-GCR-77-95), National Technical Information Service (NTIS), Springfield, VA (1977).
23.
Zurück zum Zitat R.P. Schifiliti, “Use of Fire Plume Theory in the Design and Analysis of Fire Detector and Sprinkler Response,” Master’s Thesis, Worcester Polytechnic Institute, Center for Firesafety Studies, Worcester, MA (1986). R.P. Schifiliti, “Use of Fire Plume Theory in the Design and Analysis of Fire Detector and Sprinkler Response,” Master’s Thesis, Worcester Polytechnic Institute, Center for Firesafety Studies, Worcester, MA (1986).
24.
Zurück zum Zitat D.W. Stroup, D.D. Evans, and P. Martin, NBS Special Publication 712, National Bureau of Standards, Gaithersburg, MD (1986). D.W. Stroup, D.D. Evans, and P. Martin, NBS Special Publication 712, National Bureau of Standards, Gaithersburg, MD (1986).
25.
Zurück zum Zitat SFPE Handbook of Fire Protection Engineering, National Fire Protection Association, Quincy, MA (1988 and 1995). SFPE Handbook of Fire Protection Engineering, National Fire Protection Association, Quincy, MA (1988 and 1995).
26.
Zurück zum Zitat NFPA 72®, National Fire Alarm Code®, National Fire Protection Association, Quincy, MA, 1984 through 1996 editions. NFPA 72®, National Fire Alarm Code®, National Fire Protection Association, Quincy, MA, 1984 through 1996 editions.
27.
Zurück zum Zitat G. Heskestad and M. Delichatsios, “Update: The Initial Convective Flow in Fire,” Fire Safety Journal, 15, pp. 471–475 (1989).CrossRef G. Heskestad and M. Delichatsios, “Update: The Initial Convective Flow in Fire,” Fire Safety Journal, 15, pp. 471–475 (1989).CrossRef
28.
Zurück zum Zitat C. Beyler, personal communication (1985). C. Beyler, personal communication (1985).
29.
Zurück zum Zitat C. Beyler, “A Design Method for Flaming Fire Detection,” Fire Technology, 20, 4, pp. 9–16 (1984).CrossRef C. Beyler, “A Design Method for Flaming Fire Detection,” Fire Technology, 20, 4, pp. 9–16 (1984).CrossRef
30.
Zurück zum Zitat J.R. Lawson, W.D. Walton, and W.H. Twilley, NBSIR 83-2787, National Bureau of Standards, Washington, DC (1983). J.R. Lawson, W.D. Walton, and W.H. Twilley, NBSIR 83-2787, National Bureau of Standards, Washington, DC (1983).
31.
Zurück zum Zitat B.J. Meacham, “Characterization of Smoke from Burning Materials for the Evaluation of Light Scattering-Type Smoke Detector Response,” Master’s Thesis, Worcester Polytechnic Institute, Center for Firesafety Studies, Worcester, MA (1991). B.J. Meacham, “Characterization of Smoke from Burning Materials for the Evaluation of Light Scattering-Type Smoke Detector Response,” Master’s Thesis, Worcester Polytechnic Institute, Center for Firesafety Studies, Worcester, MA (1991).
32.
Zurück zum Zitat B.J. Meacham and V. Motevalli, “Characterization of Smoke from Smoldering Combustion for the Evaluation of Light Scattering-Type Smoke Detector Response,” Journal of Fire Protection Engineering, SFPE, 4, 1, p. 17 (1992). B.J. Meacham and V. Motevalli, “Characterization of Smoke from Smoldering Combustion for the Evaluation of Light Scattering-Type Smoke Detector Response,” Journal of Fire Protection Engineering, SFPE, 4, 1, p. 17 (1992).
33.
Zurück zum Zitat UL 268, Standard for Safety Smoke Detectors for Fire Protective Signaling Systems, Underwriters Laboratories, Inc., Northbrook, IL (1989). UL 268, Standard for Safety Smoke Detectors for Fire Protective Signaling Systems, Underwriters Laboratories, Inc., Northbrook, IL (1989).
34.
Zurück zum Zitat G. Mulholland, “Smoke Production and Properties,” SFPE Handbook of Fire Protection Engineering, 4th ed., National Fire Protection Association, Quincy, MA, (2008). G. Mulholland, “Smoke Production and Properties,” SFPE Handbook of Fire Protection Engineering, 4th ed., National Fire Protection Association, Quincy, MA, (2008).
35.
Zurück zum Zitat J. Geiman and D.T. Gottuk, “Alarm Thresholds for Smoke Detector Modeling,” Fire Safety Science—Proceedings of the Seventh International Symposium, International Association for Fire Safety Science, Worcester, MA, pp. 197–208 (2003). J. Geiman and D.T. Gottuk, “Alarm Thresholds for Smoke Detector Modeling,” Fire Safety Science—Proceedings of the Seventh International Symposium, International Association for Fire Safety Science, Worcester, MA, pp. 197–208 (2003).
36.
Zurück zum Zitat D.T. Gottuk, S.A. Hill, C.F. Schemel, B.D. Strehlen, S.L. Rose-Phersson, R.E. Shaffer, P.A. Tatem, and F.W. Williams, “Identification of Fire Signatures for Shipboard Multicriteria Fire Detection Systems,” Naval Research Laboratory, Memorandum Report, 6180-99-8386, Washington, DC, June 18, 1999. D.T. Gottuk, S.A. Hill, C.F. Schemel, B.D. Strehlen, S.L. Rose-Phersson, R.E. Shaffer, P.A. Tatem, and F.W. Williams, “Identification of Fire Signatures for Shipboard Multicriteria Fire Detection Systems,” Naval Research Laboratory, Memorandum Report, 6180-99-8386, Washington, DC, June 18, 1999.
37.
Zurück zum Zitat H.W. Carhart, T.A. Toomey, and F.W. Williams, “The Ex-USS SHADWELL Full-Scale Fire Research and Test Ship,” NRL Memorandum Report 6074, revised January 20, 1988, reissued 1992. H.W. Carhart, T.A. Toomey, and F.W. Williams, “The Ex-USS SHADWELL Full-Scale Fire Research and Test Ship,” NRL Memorandum Report 6074, revised January 20, 1988, reissued 1992.
38.
Zurück zum Zitat M.J. Spearpoint and J.N. Smithies, “Practical Comparison of Domestic Smoke Alarm Sensitivity Standards,” Fire Research Station, Home Office Fire Research and Development Group, FRDG Publication No. 4.97 (1997). M.J. Spearpoint and J.N. Smithies, “Practical Comparison of Domestic Smoke Alarm Sensitivity Standards,” Fire Research Station, Home Office Fire Research and Development Group, FRDG Publication No. 4.97 (1997).
39.
Zurück zum Zitat R.W. Bukowski, T.E. Waterman, and W.J. Christian, “Detector Sensitivity and Siting Requirements for Dwellings,” Final Technical Report, IITRI Project J6340, Contract No. 4-36092, NBS-GCR-75-51, National Bureau of Standards, Gaithersburg, MD (1975). R.W. Bukowski, T.E. Waterman, and W.J. Christian, “Detector Sensitivity and Siting Requirements for Dwellings,” Final Technical Report, IITRI Project J6340, Contract No. 4-36092, NBS-GCR-75-51, National Bureau of Standards, Gaithersburg, MD (1975).
40.
Zurück zum Zitat UL 217, Standards for Single and Multiple Station Smoke Alarms, Underwriters Laboratories Inc., Northbrook, IL (1999). UL 217, Standards for Single and Multiple Station Smoke Alarms, Underwriters Laboratories Inc., Northbrook, IL (1999).
41.
Zurück zum Zitat UL 268, Standard for Smkie Detectors for Fire Protective Signaling Systems, Northbrook, IL (1996). UL 268, Standard for Smkie Detectors for Fire Protective Signaling Systems, Northbrook, IL (1996).
42.
Zurück zum Zitat J. Hoseman, “Uber Verfahren zur Bestimmung der Korngrossenverteilung Hokkonzentrierter Polydispersionen von MiePartikeln,” Ph.D. Thesis, Aachen, Germany (1970). J. Hoseman, “Uber Verfahren zur Bestimmung der Korngrossenverteilung Hokkonzentrierter Polydispersionen von MiePartikeln,” Ph.D. Thesis, Aachen, Germany (1970).
43.
Zurück zum Zitat C.D. Litton, “A Mathematical Model for Ionization Type Smoke Detectors and the Reduced Source Approximation,” Fire Technology, 13, 4, pp. 266–281 (1977).CrossRef C.D. Litton, “A Mathematical Model for Ionization Type Smoke Detectors and the Reduced Source Approximation,” Fire Technology, 13, 4, pp. 266–281 (1977).CrossRef
44.
Zurück zum Zitat R.W. Bukowski and G.W. Mulholland, “Smoke Detector Design and Smoke Properties,” TN 973, U.S. Department of Commerce, National Bureau of Standards, Washington, DC (1978). R.W. Bukowski and G.W. Mulholland, “Smoke Detector Design and Smoke Properties,” TN 973, U.S. Department of Commerce, National Bureau of Standards, Washington, DC (1978).
45.
Zurück zum Zitat C. Helsper, H. Fissan, J. Muggli, and A. Scheidweiler, “Verification of Ionization Chamber Theory,” Fire Technology, 19, 1, p. 14 (1983). C. Helsper, H. Fissan, J. Muggli, and A. Scheidweiler, “Verification of Ionization Chamber Theory,” Fire Technology, 19, 1, p. 14 (1983).
46.
Zurück zum Zitat J. Newman, “Modified Theory for the Characterization of Ionization Smoke Detectors,” in Fire Safety Science—Proceedings of the Fourth International Symposium, International Association for Fire Safety Science, Ottawa, Ontario (1994). J. Newman, “Modified Theory for the Characterization of Ionization Smoke Detectors,” in Fire Safety Science—Proceedings of the Fourth International Symposium, International Association for Fire Safety Science, Ottawa, Ontario (1994).
47.
Zurück zum Zitat G. Heskestad, “Generalized Characteristics of Smoke Entry and Response for Products-of-Combustion Detectors,” in Proceedings, 7th International Conference on Problems of Automatic Fire Detection, Rheinish-Westfalischen Technischen Hochschule, Aachen, Germany (1975). G. Heskestad, “Generalized Characteristics of Smoke Entry and Response for Products-of-Combustion Detectors,” in Proceedings, 7th International Conference on Problems of Automatic Fire Detection, Rheinish-Westfalischen Technischen Hochschule, Aachen, Germany (1975).
48.
Zurück zum Zitat M. Kokkala et al., “Measurements of the Characteristic Lengths of Smoke Detectors,” Fire Technology, 28, 2, p. 99 (1992). M. Kokkala et al., “Measurements of the Characteristic Lengths of Smoke Detectors,” Fire Technology, 28, 2, p. 99 (1992).
49.
Zurück zum Zitat J. Bjorkman, O. Huttunen, and M. Kokkala, “Paloilmaisimien toimintaa kuvaavat laskentamallit (Calculation Models for Fire Detector Response),” Research Notes 1036, Technical Research Center of Finland (1989). J. Bjorkman, O. Huttunen, and M. Kokkala, “Paloilmaisimien toimintaa kuvaavat laskentamallit (Calculation Models for Fire Detector Response),” Research Notes 1036, Technical Research Center of Finland (1989).
50.
Zurück zum Zitat A. Oldweiler, “Investigation of the Smoke Detector L Number in the UL Smoke Box,” Master’s Thesis, Worcester Polytechnic Institute, Worcester, MA (1995). A. Oldweiler, “Investigation of the Smoke Detector L Number in the UL Smoke Box,” Master’s Thesis, Worcester Polytechnic Institute, Worcester, MA (1995).
51.
Zurück zum Zitat M.A. Delichatsios, “Categorization of Cable Flammability, Detection of Smoldering, and Flaming Cable Fires,” Interim Report, Factory Mutual Research Corporation, Norwood, MA (1980). M.A. Delichatsios, “Categorization of Cable Flammability, Detection of Smoldering, and Flaming Cable Fires,” Interim Report, Factory Mutual Research Corporation, Norwood, MA (1980).
52.
Zurück zum Zitat NFPA 92B, Guide for Smoke Management Systems in Malls, Atria, and Large Areas, National Fire Protection Association, Quincy, MA (2005). NFPA 92B, Guide for Smoke Management Systems in Malls, Atria, and Large Areas, National Fire Protection Association, Quincy, MA (2005).
53.
Zurück zum Zitat G. Heskestad, FMRC Serial Number 21017, Factory Mutual Research Corp., Norwood, MA (1974). G. Heskestad, FMRC Serial Number 21017, Factory Mutual Research Corp., Norwood, MA (1974).
54.
Zurück zum Zitat E.L. Brozovsky, “A Preliminary Approach to Siting Smoke Detectors Based on Design Fire Size and Detector Aerosol Entry Lag Time,” Master’s Thesis, Worcester Polytechnic Institute, Center for Firesafety Studies, Worcester, MA (1991). E.L. Brozovsky, “A Preliminary Approach to Siting Smoke Detectors Based on Design Fire Size and Detector Aerosol Entry Lag Time,” Master’s Thesis, Worcester Polytechnic Institute, Center for Firesafety Studies, Worcester, MA (1991).
55.
Zurück zum Zitat S. Deal, “Technical Reference Guide for FPEtool Version 3.2,” NISTIR 5486, National Institute for Standards and Technology, Gaithersburg, MD (1994). S. Deal, “Technical Reference Guide for FPEtool Version 3.2,” NISTIR 5486, National Institute for Standards and Technology, Gaithersburg, MD (1994).
56.
Zurück zum Zitat G. Heskestad and M.A. Delichatsios, “Environments of Fire Detectors, Phase I: Effects of Fire Size, Ceiling Heights, and Material,” Volume II, Analysis Technical Report Serial Number 11427, RC-T-11, Factory Mutual Research Corp., Norwood, MA (1977). G. Heskestad and M.A. Delichatsios, “Environments of Fire Detectors, Phase I: Effects of Fire Size, Ceiling Heights, and Material,” Volume II, Analysis Technical Report Serial Number 11427, RC-T-11, Factory Mutual Research Corp., Norwood, MA (1977).
57.
Zurück zum Zitat K.B. Ginn, Architectural Acoustics, Bruel and Kjaer (1978). K.B. Ginn, Architectural Acoustics, Bruel and Kjaer (1978).
58.
Zurück zum Zitat H. Butler, A. Bowyer, and J. Kew, “Locating Fire Alarm Sounders for Audibility,” Building Services Research and Information Association, Bracknell, UK (1981). H. Butler, A. Bowyer, and J. Kew, “Locating Fire Alarm Sounders for Audibility,” Building Services Research and Information Association, Bracknell, UK (1981).
59.
Zurück zum Zitat E.H. Nober, H. Pierce, A. Well, and C.C. Johnson, NBS-GCR-83-284, National Bureau of Standards, Washington, DC (1980). E.H. Nober, H. Pierce, A. Well, and C.C. Johnson, NBS-GCR-83-284, National Bureau of Standards, Washington, DC (1980).
60.
Zurück zum Zitat M.J. Kahn, “Detection Times to Fire-Related Stimuli by Sleeping Subjects,” NBS-GCR-83-435, National Bureau of Standards, Washington, DC (1983). M.J. Kahn, “Detection Times to Fire-Related Stimuli by Sleeping Subjects,” NBS-GCR-83-435, National Bureau of Standards, Washington, DC (1983).
61.
Zurück zum Zitat British Standard Code of Practice CP3, British Standards Institution, London (1972). British Standard Code of Practice CP3, British Standards Institution, London (1972).
62.
Zurück zum Zitat C. Davis and D. Davis, Sound System Engineering, Howard H. Sams and Co., Inc., Indianapolis, IN (1975). C. Davis and D. Davis, Sound System Engineering, Howard H. Sams and Co., Inc., Indianapolis, IN (1975).
63.
Zurück zum Zitat Product Catalog, Fire Control Instruments, Newton, MA (1986). Product Catalog, Fire Control Instruments, Newton, MA (1986).
64.
Zurück zum Zitat “Nomenclature and Definitions for Illuminating Engineering,” IES RP-16-1987, Illuminating Society of North America, New York (1987). “Nomenclature and Definitions for Illuminating Engineering,” IES RP-16-1987, Illuminating Society of North America, New York (1987).
65.
Zurück zum Zitat K. Jacobs, Understanding Speech Intelligibility and the Fire Alarm Code, presented at the NFPA Congress, Anaheim, CA, copyright Bose corporation (2001). K. Jacobs, Understanding Speech Intelligibility and the Fire Alarm Code, presented at the NFPA Congress, Anaheim, CA, copyright Bose corporation (2001).
66.
Zurück zum Zitat Accredited Standards Committee S3 (Bioacoustics), “Method for Measuring the Intelligibility of Speech over Communications Systems,” ANSI S3.2, Acoustical Society of America, Melville, NY (1995). Accredited Standards Committee S3 (Bioacoustics), “Method for Measuring the Intelligibility of Speech over Communications Systems,” ANSI S3.2, Acoustical Society of America, Melville, NY (1995).
67.
Zurück zum Zitat International Organization for Standardization, “Acoustics—The Construction and Calibration of Speech Intelligibility Tests,” ISO TR 4870, Geneva, Switzerland (1991). International Organization for Standardization, “Acoustics—The Construction and Calibration of Speech Intelligibility Tests,” ISO TR 4870, Geneva, Switzerland (1991).
68.
Zurück zum Zitat International Electrotechnical Commission, “Sound Systems for Emergency Purposes,” IEC 60849, 2nd ed., IEC, Geneva, Switzerland (1998). International Electrotechnical Commission, “Sound Systems for Emergency Purposes,” IEC 60849, 2nd ed., IEC, Geneva, Switzerland (1998).
69.
Zurück zum Zitat International Electrotechnical Commission, “Sound System Equipment—Part 16: Objective Rating of Speech Intelligibility by Speech Transmission Index,” IEC-60268-16, 3rd ed., IEC, Geneva, Switzerland (2003). International Electrotechnical Commission, “Sound System Equipment—Part 16: Objective Rating of Speech Intelligibility by Speech Transmission Index,” IEC-60268-16, 3rd ed., IEC, Geneva, Switzerland (2003).
70.
Zurück zum Zitat J.P. Woycheese, “Speech Intelligibility Measurements in an Office Building,” Journal of Fire Protection Engineering, 17, 4, pp. 245–269 (2007).CrossRef J.P. Woycheese, “Speech Intelligibility Measurements in an Office Building,” Journal of Fire Protection Engineering, 17, 4, pp. 245–269 (2007).CrossRef
71.
Zurück zum Zitat UL 1971, Standard for Safety Signaling Devices for the Hearing Impaired, Underwriters Laboratories, Inc., Northbrook, IL (1992). UL 1971, Standard for Safety Signaling Devices for the Hearing Impaired, Underwriters Laboratories, Inc., Northbrook, IL (1992).
72.
Zurück zum Zitat A. Blondel, and J. Rey, “The perception of lights of short duration at their range limits”. Transactions of the Illuminating Engineering Society, 7, 625–662 (1912). A. Blondel, and J. Rey, “The perception of lights of short duration at their range limits”. Transactions of the Illuminating Engineering Society, 7, 625–662 (1912).
73.
Zurück zum Zitat J.D. Bullough, N.P. Skinner, and Y. Zhu, “Parameters for Indirect Viewing of Visual Signals Used in Emergency Notification” The Fire Protection Research Foundation, Quincy, MA, September 2013. J.D. Bullough, N.P. Skinner, and Y. Zhu, “Parameters for Indirect Viewing of Visual Signals Used in Emergency Notification” The Fire Protection Research Foundation, Quincy, MA, September 2013.
Zurück zum Zitat V. Babrauskas, J.R. Lawson, W.D. Walton, and W.H. Twilley, NBSIR 82-2604, National Bureau of Standards, Washington, DC (1982). V. Babrauskas, J.R. Lawson, W.D. Walton, and W.H. Twilley, NBSIR 82-2604, National Bureau of Standards, Washington, DC (1982).
Metadaten
Titel
Design of Detection Systems
verfasst von
Robert P. Schifiliti
Richard L. P. Custer
Brian J. Meacham
Copyright-Jahr
2016
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-1-4939-2565-0_40