Skip to main content

2019 | OriginalPaper | Buchkapitel

30. Design of Heterogeneities and Interfaces with Nanofibers in Fuel Cell Membranes

verfasst von : Marta Zatoń, Sara Cavaliere, Deborah J. Jones, Jacques Rozière

Erschienen in: Handbook of Nanofibers

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Many fuel cell membranes are highly heterogeneous systems comprising mechanical and chemical reinforcing components, including porous polymer sheets, nanofibers or nanoparticles, as well as radical scavengers or hydrogen peroxide decomposition catalysts. In the last 10 years, great attention has been devoted to 1D nanomaterials obtained by electrospinning. Several chemistries and compositions from aliphatic or aromatic polymers to metal oxides and phosphates and morphologies from nanofibers to nanotubes have been employed to prepare nanocomposite membranes. Despite the significant advances realized, further improvements in ionomer membrane durability under operation are still required. In particular, it is crucial to control the heterogeneity induced by the nanofiber component and to strengthen the interface between them and the matrix. Specific interactions have been demonstrated to improve the fiber/matrix interface with overall improvement of dimensional and mechanical properties. In this chapter we review the different approaches to fuel cell membrane reinforcement based on electrospun polymers and inorganic nanofibers.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Borup R, Meyers J, Pivovar B, Kim YS, Mukundan R, Garland N, Myers D, Wilson M, Garzon F, Wood D, Zelenay P, More K, Stroh K, Zawodzinski T, Boncella J, McGrath JE, Inaba M, Miyatake K, Hori M, Ota K, Ogumi Z, Miyata S, Nishikata A, Siroma Z, Uchimoto Y, Yasuda K, Kimijima K-I, Iwashita N (2007) Scientific aspects of polymer electrolyte fuel cell durability and degradation. Chem Rev 107:3904–3951. https://doi.org/10.1021/cr050182lCrossRef Borup R, Meyers J, Pivovar B, Kim YS, Mukundan R, Garland N, Myers D, Wilson M, Garzon F, Wood D, Zelenay P, More K, Stroh K, Zawodzinski T, Boncella J, McGrath JE, Inaba M, Miyatake K, Hori M, Ota K, Ogumi Z, Miyata S, Nishikata A, Siroma Z, Uchimoto Y, Yasuda K, Kimijima K-I, Iwashita N (2007) Scientific aspects of polymer electrolyte fuel cell durability and degradation. Chem Rev 107:3904–3951. https://​doi.​org/​10.​1021/​cr050182lCrossRef
8.
Zurück zum Zitat Jones DJ (2012) Membrane materials for polymer electrolyte fuel cells. In: Hartnig C, Roth C (eds) Polymer electrolyte membrane direct methanol fuel cell Technology. Woodhead Publishing Ltd., Cambridge, UK, pp 27–55 Jones DJ (2012) Membrane materials for polymer electrolyte fuel cells. In: Hartnig C, Roth C (eds) Polymer electrolyte membrane direct methanol fuel cell Technology. Woodhead Publishing Ltd., Cambridge, UK, pp 27–55
9.
16.
Zurück zum Zitat Jones DJ, Rozière J (2008) Advances in the development of inorganic–organic membranes for fuel cell applications. In: Fuel cells I. Springer, Berlin, pp 219–264CrossRef Jones DJ, Rozière J (2008) Advances in the development of inorganic–organic membranes for fuel cell applications. In: Fuel cells I. Springer, Berlin, pp 219–264CrossRef
20.
Zurück zum Zitat Sood R, Iojoiu C, Espuche E, Gouanve F, Gebel G, Mendil-jakani H, Lyonnard S, Jestin J (2012) Proton conducting ionic liquid doped Nafion membranes: nano-structuration, transport properties and water sorption. J Phys Chem C 116:24413–24423. https://doi.org/10.1021/jp306626yCrossRef Sood R, Iojoiu C, Espuche E, Gouanve F, Gebel G, Mendil-jakani H, Lyonnard S, Jestin J (2012) Proton conducting ionic liquid doped Nafion membranes: nano-structuration, transport properties and water sorption. J Phys Chem C 116:24413–24423. https://​doi.​org/​10.​1021/​jp306626yCrossRef
24.
28.
Zurück zum Zitat Rao V, Kluy N, Ju W, Stimming U (2015) Proton-conducting membranes for fuel cells. In: Handbook of membrane separations: chemical, pharmaceutical, food and biotechnological applications, 2nd edn. CRC Press, Boca Raton, pp 567–614CrossRef Rao V, Kluy N, Ju W, Stimming U (2015) Proton-conducting membranes for fuel cells. In: Handbook of membrane separations: chemical, pharmaceutical, food and biotechnological applications, 2nd edn. CRC Press, Boca Raton, pp 567–614CrossRef
29.
Zurück zum Zitat Bahar B, Hobson AR, Kolde JA, Zuckerbrod D, Bahar B, Hobson AR, Kolde JA, Zuckerbrod D (1996) Ultra-thin integral composite membrane Bahar B, Hobson AR, Kolde JA, Zuckerbrod D, Bahar B, Hobson AR, Kolde JA, Zuckerbrod D (1996) Ultra-thin integral composite membrane
32.
36.
Zurück zum Zitat Adjemian KT, Dominey R, Krishnan L, Ota H, Majsztrik P, Zhang T, Mann J, Kirby B, Gatto L, Velo-Simpson M, Leahy J, Srimvasan S, Benziger JB, Bocarsly AB (2006) Function and characterization of metal oxide-nafion composite membranes for elevated-temperature H2/O2 PEM fuel cells. Chem Mater 18:2238–2248. https://doi.org/10.1021/cm051781bCrossRef Adjemian KT, Dominey R, Krishnan L, Ota H, Majsztrik P, Zhang T, Mann J, Kirby B, Gatto L, Velo-Simpson M, Leahy J, Srimvasan S, Benziger JB, Bocarsly AB (2006) Function and characterization of metal oxide-nafion composite membranes for elevated-temperature H2/O2 PEM fuel cells. Chem Mater 18:2238–2248. https://​doi.​org/​10.​1021/​cm051781bCrossRef
38.
Zurück zum Zitat Alberti G, Casciola M, Capitani D, Donnadio A, Narducci R, Pica M, Sganappa M (2007) Novel Nafion–zirconium phosphate nanocomposite membranes with enhanced stability of proton conductivity at medium temperature and high relative humidity. Electrochim Acta 52:8125–8132CrossRef Alberti G, Casciola M, Capitani D, Donnadio A, Narducci R, Pica M, Sganappa M (2007) Novel Nafion–zirconium phosphate nanocomposite membranes with enhanced stability of proton conductivity at medium temperature and high relative humidity. Electrochim Acta 52:8125–8132CrossRef
41.
Zurück zum Zitat Mittelsteadt C, Willey J (2009) Dimensionally stable MembraneTM for high pressure electrolyzers. In: 7th international energy conversion engineering conference, American Institute of Aeronautics and Astronautics, Reston, pp 1–14 Mittelsteadt C, Willey J (2009) Dimensionally stable MembraneTM for high pressure electrolyzers. In: 7th international energy conversion engineering conference, American Institute of Aeronautics and Astronautics, Reston, pp 1–14
46.
Zurück zum Zitat Wendorff JH, Agarwal S, Greiner A (2012) Electrospinning: materials, processing and applications. Wiley VCH, WeinheimCrossRef Wendorff JH, Agarwal S, Greiner A (2012) Electrospinning: materials, processing and applications. Wiley VCH, WeinheimCrossRef
47.
Zurück zum Zitat Subianto S, Cornu D, Cavaliere S (2015) Fundamentals of electrospinning. In: Cavaliere S (ed) Electrospinning advance energy and environmental applications. CRC Press, Boca Raton, pp 1–27 Subianto S, Cornu D, Cavaliere S (2015) Fundamentals of electrospinning. In: Cavaliere S (ed) Electrospinning advance energy and environmental applications. CRC Press, Boca Raton, pp 1–27
48.
49.
Zurück zum Zitat Jones DJ, Rozière J (2008) Advances in the development of inorganic–organic membranes for fuel cell applications. In: Scherer GG (ed) Fuel cells I. Springer, Berlin, pp 219–264CrossRef Jones DJ, Rozière J (2008) Advances in the development of inorganic–organic membranes for fuel cell applications. In: Scherer GG (ed) Fuel cells I. Springer, Berlin, pp 219–264CrossRef
50.
Zurück zum Zitat Kerres JA (2001) Developement of ionomer membranes for fuel cells. J Membr Sci 185:3–27CrossRef Kerres JA (2001) Developement of ionomer membranes for fuel cells. J Membr Sci 185:3–27CrossRef
52.
Zurück zum Zitat Rezakazemi M, Sadrzadeh M, Mohammadi T, Matsuura T (2017) Methods for the preparation of organic–inorganic nanocomposite polymer electrolyte membranes for fuel cells. In: Inamuddin D, Mohammad A, Asiri AM (eds) Organic–inorganic composite polymer electrolyte membranes preparation properties fuel cell applications. Springer, Cham, pp 311–325 Rezakazemi M, Sadrzadeh M, Mohammadi T, Matsuura T (2017) Methods for the preparation of organic–inorganic nanocomposite polymer electrolyte membranes for fuel cells. In: Inamuddin D, Mohammad A, Asiri AM (eds) Organic–inorganic composite polymer electrolyte membranes preparation properties fuel cell applications. Springer, Cham, pp 311–325
54.
Zurück zum Zitat Shami Z, Sharifi-Sanjani N, Khanyghma B, Farjpour S, Fotouhi A (2014) Ordered exfoliated silicate platelets architecture: hydrogen bonded poly(acrylic acid)-poly(ethylene oxide)/Na-montmorillonite complex nanofibrous membranes prepared by electrospinning technique. Rsc Adv 4:40892–40897. https://doi.org/10.1039/C4ra05769dCrossRef Shami Z, Sharifi-Sanjani N, Khanyghma B, Farjpour S, Fotouhi A (2014) Ordered exfoliated silicate platelets architecture: hydrogen bonded poly(acrylic acid)-poly(ethylene oxide)/Na-montmorillonite complex nanofibrous membranes prepared by electrospinning technique. Rsc Adv 4:40892–40897. https://​doi.​org/​10.​1039/​C4ra05769dCrossRef
57.
Zurück zum Zitat Lim J-M, Won J-H, Lee H-J, Hong YT, Lee M-S, Ko CH, Lee S-Y (2012) Polyimide nonwoven fabric-reinforced, flexible phosphosilicate glass composite membranes for high-temperature/low-humidity proton exchange membrane fuel cells. J Mater Chem 22:18550. https://doi.org/10.1039/c2jm33406bCrossRef Lim J-M, Won J-H, Lee H-J, Hong YT, Lee M-S, Ko CH, Lee S-Y (2012) Polyimide nonwoven fabric-reinforced, flexible phosphosilicate glass composite membranes for high-temperature/low-humidity proton exchange membrane fuel cells. J Mater Chem 22:18550. https://​doi.​org/​10.​1039/​c2jm33406bCrossRef
62.
Zurück zum Zitat Lee HH-J, Kim J-HJ, Won J-HJ, Lim J-M, Hong YT, Lee S-Y (2013) Highly flexible, proton-conductive silicate glass electrolytes for medium-temperature/low-humidity proton exchange membrane fuel cells. ACS Appl Mater Interfaces 5:5034–5043. https://doi.org/10.1021/am400836hCrossRef Lee HH-J, Kim J-HJ, Won J-HJ, Lim J-M, Hong YT, Lee S-Y (2013) Highly flexible, proton-conductive silicate glass electrolytes for medium-temperature/low-humidity proton exchange membrane fuel cells. ACS Appl Mater Interfaces 5:5034–5043. https://​doi.​org/​10.​1021/​am400836hCrossRef
64.
Zurück zum Zitat Ketpang K, Lee K, Shanmugam S (2014) Facile synthesis of porous metal oxide nanotubes and modified Nafion composite membranes for polymer electrolyte fuel cells operated under low relative humidity. ACS Appl Mater Interfaces 6:16734–16744CrossRef Ketpang K, Lee K, Shanmugam S (2014) Facile synthesis of porous metal oxide nanotubes and modified Nafion composite membranes for polymer electrolyte fuel cells operated under low relative humidity. ACS Appl Mater Interfaces 6:16734–16744CrossRef
70.
Zurück zum Zitat Choi J, Lee C, Hawkins SC, Huynh CP, Park J, Jeon Y, Truong YB, Kyratzis IL, Shul Y-G (2014) Direct spun aligned carbon nanotube web-reinforced proton exchange membranes for fuel cells graphical abstract spinning of CNTs is more robust than SPEEK alone and outperforms SPEEK and Nafion 212. https://doi.org/10.1039/c4ra03117bCrossRef Choi J, Lee C, Hawkins SC, Huynh CP, Park J, Jeon Y, Truong YB, Kyratzis IL, Shul Y-G (2014) Direct spun aligned carbon nanotube web-reinforced proton exchange membranes for fuel cells graphical abstract spinning of CNTs is more robust than SPEEK alone and outperforms SPEEK and Nafion 212. https://​doi.​org/​10.​1039/​c4ra03117bCrossRef
72.
Zurück zum Zitat Maneeratana V, Bass JD, Azaïs T, Patissier A, Vallé K (2013) Fractal inorganic − organic interfaces in hybrid membranes for efficient proton transport. Adv Funct Mater 23:2872–2880CrossRef Maneeratana V, Bass JD, Azaïs T, Patissier A, Vallé K (2013) Fractal inorganic − organic interfaces in hybrid membranes for efficient proton transport. Adv Funct Mater 23:2872–2880CrossRef
75.
92.
Zurück zum Zitat Choi J, Lee K, Wycisk R, Pintauro PN, Mather PT (2010) Nanofiber composite membranes with low equivalent weight perfluorosulfonic acid polymers. J Mater Chem 20:6282–6290CrossRef Choi J, Lee K, Wycisk R, Pintauro PN, Mather PT (2010) Nanofiber composite membranes with low equivalent weight perfluorosulfonic acid polymers. J Mater Chem 20:6282–6290CrossRef
95.
Zurück zum Zitat Bajon R, Balaji S, Guo SM (2009) Electrospun Nafion nanofiber for proton exchange membrane fuel cell application. J Fuel Cell Sci Technol 6:31004–31006CrossRef Bajon R, Balaji S, Guo SM (2009) Electrospun Nafion nanofiber for proton exchange membrane fuel cell application. J Fuel Cell Sci Technol 6:31004–31006CrossRef
96.
Zurück zum Zitat Chen H, Snyder JD, Elabd Y a (2008) Electrospinning and solution properties of Nafion and poly (acrylic acid). Macromolecules 41:128–135CrossRef Chen H, Snyder JD, Elabd Y a (2008) Electrospinning and solution properties of Nafion and poly (acrylic acid). Macromolecules 41:128–135CrossRef
97.
113.
114.
115.
122.
Zurück zum Zitat Tamura T, Kawakami H (2010) Aligned electrospun nanofiber composite membranes for fuel cell electrolytes. Nano Lett 10:1324–1328CrossRef Tamura T, Kawakami H (2010) Aligned electrospun nanofiber composite membranes for fuel cell electrolytes. Nano Lett 10:1324–1328CrossRef
123.
Zurück zum Zitat Reyes-Rodriguez JL, Solorza-Feria O, García-Bernabé A, Giménez E, Sahuquillo O, Compañ V (2016) Conductivity of composite membrane-based poly(ether-ether-ketone) sulfonated (SPEEK) nanofiber mats of varying thickness. RSC Adv 6:56986–56999. https://doi.org/10.1039/C6RA08228ACrossRef Reyes-Rodriguez JL, Solorza-Feria O, García-Bernabé A, Giménez E, Sahuquillo O, Compañ V (2016) Conductivity of composite membrane-based poly(ether-ether-ketone) sulfonated (SPEEK) nanofiber mats of varying thickness. RSC Adv 6:56986–56999. https://​doi.​org/​10.​1039/​C6RA08228ACrossRef
137.
139.
143.
Zurück zum Zitat Giancola S, Reyes Carmona A, Dupont M, Cavaliere S, Jones D, Rozière J, Moukheiber E, Merlo L (2014) Nanocomposite PEM reinforced with electrospun polymer nanofibres for water electrolysis. Euro-mediterranean Hydrogen Technologies Conference (EmHyTeC 2014) – Taormina (Italy) Giancola S, Reyes Carmona A, Dupont M, Cavaliere S, Jones D, Rozière J, Moukheiber E, Merlo L (2014) Nanocomposite PEM reinforced with electrospun polymer nanofibres for water electrolysis. Euro-mediterranean Hydrogen Technologies Conference (EmHyTeC 2014) – Taormina (Italy)
149.
Zurück zum Zitat He Y, Zhang H, Li Y, Wang J, Ma L, Zhang W, Liu J (2015) Synergistic proton transfer through nanofibrous composite membranes by suitably combining proton carriers from the nanofiber mat and pore-filling matrix. J Mater Chem A 3:21832–21841. https://doi.org/10.1039/C5TA03601ACrossRef He Y, Zhang H, Li Y, Wang J, Ma L, Zhang W, Liu J (2015) Synergistic proton transfer through nanofibrous composite membranes by suitably combining proton carriers from the nanofiber mat and pore-filling matrix. J Mater Chem A 3:21832–21841. https://​doi.​org/​10.​1039/​C5TA03601ACrossRef
150.
Zurück zum Zitat Jones D, Rozière J, Subianto S, Cavaliere S, Burton S (2015) Reinforced ionomer membranes, fabrication and application in energy conversion devices US Patent 20170279142A1 Jones D, Rozière J, Subianto S, Cavaliere S, Burton S (2015) Reinforced ionomer membranes, fabrication and application in energy conversion devices US Patent 20170279142A1
153.
Zurück zum Zitat Sood R, Donnadio A, Giancola S, Kreisz A, Jones DJ, Cavaliere S (2016) 1,2,3-Triazole-functionalized polysulfone synthesis through microwave-assisted copper-catalyzed click chemistry: a highly proton conducting high temperature membrane. ACS Appl Mater Interfaces 8:16897–16906. https://doi.org/10.1021/acsami.6b02713CrossRef Sood R, Donnadio A, Giancola S, Kreisz A, Jones DJ, Cavaliere S (2016) 1,2,3-Triazole-functionalized polysulfone synthesis through microwave-assisted copper-catalyzed click chemistry: a highly proton conducting high temperature membrane. ACS Appl Mater Interfaces 8:16897–16906. https://​doi.​org/​10.​1021/​acsami.​6b02713CrossRef
154.
Zurück zum Zitat Sood R, Donnadio A, Giancola S, Kreisz A, Jones DJ, Rozière J, Cavaliere S (2016) 1,2,3-Triazole-functionalized polysulfone synthesis and application in proton exchange membranes for low and high temperature PEMFC. Meet Abstr MA2016-02:2605 Sood R, Donnadio A, Giancola S, Kreisz A, Jones DJ, Rozière J, Cavaliere S (2016) 1,2,3-Triazole-functionalized polysulfone synthesis and application in proton exchange membranes for low and high temperature PEMFC. Meet Abstr MA2016-02:2605
168.
Zurück zum Zitat Di Vona ML, Sgreccia E, Licoccia S, Alberti G, Tortet L, Knauth P (2009) Analysis of temperature-promoted and solvent-assisted cross-linking in sulfonated poly(ether ether ketone) (SPEEK) proton-conducting membranes. J Phys Chem B 113:7505–7512. https://doi.org/10.1021/jp9006679CrossRef Di Vona ML, Sgreccia E, Licoccia S, Alberti G, Tortet L, Knauth P (2009) Analysis of temperature-promoted and solvent-assisted cross-linking in sulfonated poly(ether ether ketone) (SPEEK) proton-conducting membranes. J Phys Chem B 113:7505–7512. https://​doi.​org/​10.​1021/​jp9006679CrossRef
173.
Zurück zum Zitat Kreisz A (2016) PhD thesis, Membranes PBI pour pile à combustible haute température, Université de Montpellier. Kreisz A (2016) PhD thesis, Membranes PBI pour pile à combustible haute température, Université de Montpellier.
174.
Zurück zum Zitat Nedellec Y, Donzel N, Kreisz A, Jones D, Rozière J (2015) Cross-linked phosphoric acid doped PBI membranes and their performance on operation as automotive range extender. ECS Meet Abstr MA2015-03:638 Nedellec Y, Donzel N, Kreisz A, Jones D, Rozière J (2015) Cross-linked phosphoric acid doped PBI membranes and their performance on operation as automotive range extender. ECS Meet Abstr MA2015-03:638
175.
176.
Zurück zum Zitat Allegheny Science & Technology for the U.S. Department of Energy VTO (2016) 2016 Vehicle Technologies Office Annual Merit Review Results Report Allegheny Science & Technology for the U.S. Department of Energy VTO (2016) 2016 Vehicle Technologies Office Annual Merit Review Results Report
Metadaten
Titel
Design of Heterogeneities and Interfaces with Nanofibers in Fuel Cell Membranes
verfasst von
Marta Zatoń
Sara Cavaliere
Deborah J. Jones
Jacques Rozière
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-319-53655-2_32

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.