Skip to main content

2025 | OriginalPaper | Buchkapitel

Design of Japanese Speech Recognition and Real-Time Translation System Based on Deep Learning

verfasst von : Xuanxuan Zhang

Erschienen in: Advances in Communication, Devices and Networking

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Speech recognition is the process of recognizing and understanding human voices, and converting them into textual information. Speech recognition is a complex and important technology, and it is an important research topic. On this basis, a speech recognition method based on embedded technology was proposed. Based on the above research, this article designed and implemented an embedded Japanese translation system. Language recognition technology is a machine that recognizes, understands, and converts language information into textual information. Nowadays, computer dictionaries and sound recognition technology are both advancing. Due to the advancement of chip technology, embedded systems have more functions and speech recognition technology can be embedded into embedded systems. Therefore, embedded speech recognition has become a new development direction. This article explored a Japanese speech recognition and real-time translation system based on convolutional neural networks (CNN). Firstly, it explored how to build a speech recognition system and then constructed a translation system. After that, it constructed an end-to-end speech recognition model. Finally, the superiority of the system in this article was verified through experiments (the accuracy, recall, and F1 mean of the speech recognition and real-time translation system based on the algorithm in this article were higher than or equal to 0.78).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Rivera-Trigueros I (2022) Machine translation systems and quality assessment: a systematic review. Lang Resour Eval 56(2):593–619CrossRef Rivera-Trigueros I (2022) Machine translation systems and quality assessment: a systematic review. Lang Resour Eval 56(2):593–619CrossRef
2.
Zurück zum Zitat Shi C (2022) Research on intelligent language translation system based on deep learning algorithm. Soft Comput 26(16):7509–7518CrossRef Shi C (2022) Research on intelligent language translation system based on deep learning algorithm. Soft Comput 26(16):7509–7518CrossRef
3.
Zurück zum Zitat Mosbah M (2022) A novel practical algorithm for strong and weak synonyms extraction with simple equality operation of web operational machine translation systems results. Int J Knowl Eng Data Mining 7(3–4):271–285CrossRef Mosbah M (2022) A novel practical algorithm for strong and weak synonyms extraction with simple equality operation of web operational machine translation systems results. Int J Knowl Eng Data Mining 7(3–4):271–285CrossRef
4.
Zurück zum Zitat Zhang Y, Park DS, Han W (2022) Bigssl: exploring the frontier of large-scale semi-supervised learning for automatic speech recognition. IEEE J Selected Topics Signal Process 16(6):1519–1532CrossRef Zhang Y, Park DS, Han W (2022) Bigssl: exploring the frontier of large-scale semi-supervised learning for automatic speech recognition. IEEE J Selected Topics Signal Process 16(6):1519–1532CrossRef
5.
Zurück zum Zitat Ma P, Petridis S, Pantic M (2022) Visual speech recognition for multiple languages in the wild. Nat Mach Intell 4(11):930–939CrossRef Ma P, Petridis S, Pantic M (2022) Visual speech recognition for multiple languages in the wild. Nat Mach Intell 4(11):930–939CrossRef
6.
Zurück zum Zitat Tursunovich RI (2023) Aspects of language in translation and translator skills in literary translation. Galaxy Int Interdisc Res J 11(3):573–577 Tursunovich RI (2023) Aspects of language in translation and translator skills in literary translation. Galaxy Int Interdisc Res J 11(3):573–577
7.
Zurück zum Zitat Jumayeva M (2022) Effective creative way of Erkin Vahidov. translator, poet, hero of Uzbekistan. Sci Innov 1(B5):404–409 Jumayeva M (2022) Effective creative way of Erkin Vahidov. translator, poet, hero of Uzbekistan. Sci Innov 1(B5):404–409
8.
Zurück zum Zitat Liu CF (2021) Translator professionalism in Asia. Perspectives 29(1):1–19CrossRef Liu CF (2021) Translator professionalism in Asia. Perspectives 29(1):1–19CrossRef
9.
Zurück zum Zitat Kornacki M, Pietrzak P (2021) New translator training environments: towards improving translation students’ digital resilience. New Voices Transl Stud 17(1):1–22 Kornacki M, Pietrzak P (2021) New translator training environments: towards improving translation students’ digital resilience. New Voices Transl Stud 17(1):1–22
10.
Zurück zum Zitat Beseghi M (2021) Bridging the gap between non-professional subtitling and translator training: a collaborative approach. Interpreter Transl Trainer 15(1):102–117CrossRef Beseghi M (2021) Bridging the gap between non-professional subtitling and translator training: a collaborative approach. Interpreter Transl Trainer 15(1):102–117CrossRef
11.
Zurück zum Zitat Giczela-Pastwa J (2021) Developing phraseological competence in L2 legal translator trainees: a proposal of a data mining technique applied in translation from an LLD into ELF. Interpreter Transl Trainer 15(2):187–204CrossRef Giczela-Pastwa J (2021) Developing phraseological competence in L2 legal translator trainees: a proposal of a data mining technique applied in translation from an LLD into ELF. Interpreter Transl Trainer 15(2):187–204CrossRef
12.
Zurück zum Zitat Vieira LN, O’Hagan M, O’Sullivan C (2021) Understanding the societal impacts of machine translation: a critical review of the literature on medical and legal use cases. Inf Commun Soc 24(11):1515–1532CrossRef Vieira LN, O’Hagan M, O’Sullivan C (2021) Understanding the societal impacts of machine translation: a critical review of the literature on medical and legal use cases. Inf Commun Soc 24(11):1515–1532CrossRef
13.
Zurück zum Zitat Ranathunga S, Lee ESA, Prifti Skenduli M et al (203) Neural machine translation for low-resource languages: a survey. ACM Comput Surv 55(11):1–37 Ranathunga S, Lee ESA, Prifti Skenduli M et al (203) Neural machine translation for low-resource languages: a survey. ACM Comput Surv 55(11):1–37
14.
Zurück zum Zitat Torres-Simon E, Pieta H, Bueno MR (2021) Indirect translation in translator training: taking stock and looking ahead. Interpreter Transl Trainer 15(2):260–281CrossRef Torres-Simon E, Pieta H, Bueno MR (2021) Indirect translation in translator training: taking stock and looking ahead. Interpreter Transl Trainer 15(2):260–281CrossRef
15.
Zurück zum Zitat Upadyay A, Kashyap A, Pattewale S (2022) Comparative study of CNN based sign language translation models. Int J Res Eng Sci Manage 5(6):289–291 Upadyay A, Kashyap A, Pattewale S (2022) Comparative study of CNN based sign language translation models. Int J Res Eng Sci Manage 5(6):289–291
Metadaten
Titel
Design of Japanese Speech Recognition and Real-Time Translation System Based on Deep Learning
verfasst von
Xuanxuan Zhang
Copyright-Jahr
2025
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-6465-5_18