Skip to main content
Erschienen in: Microsystem Technologies 6/2018

16.12.2017 | Technical Paper

Design of new microchannel to reduce applied voltage for microparticles separation using dielectrophoresis method

verfasst von: Bahram Azizollah Ganji, Ali Taghadosi Aghamahalli

Erschienen in: Microsystem Technologies | Ausgabe 6/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper presents a new structure of microchannel in order to reduce the applied voltage using dielectrophoresis (DEP). DEP is one of the most popular techniques to separate microparticles which needs an electric field in microfluidic devices. In this study, the AC-DEP sidewall electrodes are used. The novelty of this research is to change the outlet microchannel size which effectively reduces applied voltage. In previous work, in order to separate particles with 3.5 and 4 µm diameters, 4.5 V was needed. In new design, we keep all effective parameters constant and change one of the outlet microchannel size from 50 to 60, 70 and 80 µm. Therefore, in order to separate the microparticles, we need only 3, 2 and 1.3 V, respectively.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Barbaros Cetin DL (2011) Dielectrophoresis in microfluidics technology. Electrophoresis 32:2410–2427CrossRef Barbaros Cetin DL (2011) Dielectrophoresis in microfluidics technology. Electrophoresis 32:2410–2427CrossRef
Zurück zum Zitat Debye P, Eckstein BH, Barber WA, Arquette GJ (1954) Experiments on polymer solution in inhomogeneous electrical fields. J Chem Phys 22:152–153CrossRef Debye P, Eckstein BH, Barber WA, Arquette GJ (1954) Experiments on polymer solution in inhomogeneous electrical fields. J Chem Phys 22:152–153CrossRef
Zurück zum Zitat Hyoung Kang K, Xuan X, Kang Y, Li D (2006) Effects of dc-dielectrophoretic force on particle trajectories in microchannels. J Appl Phys 99:064702CrossRef Hyoung Kang K, Xuan X, Kang Y, Li D (2006) Effects of dc-dielectrophoretic force on particle trajectories in microchannels. J Appl Phys 99:064702CrossRef
Zurück zum Zitat Jones TB (2005) Electromechanics of particles. Cambridge University Press, England Jones TB (2005) Electromechanics of particles. Cambridge University Press, England
Zurück zum Zitat Kang KH, Xuan XC, Kang YJ, Li DQ (2006) Effects of dc-dielectrophoretic force on particle trajectories in microchannels. J Appl Phys 99(1–8):064702CrossRef Kang KH, Xuan XC, Kang YJ, Li DQ (2006) Effects of dc-dielectrophoretic force on particle trajectories in microchannels. J Appl Phys 99(1–8):064702CrossRef
Zurück zum Zitat Kang Y, Li D, Kalams SA, Eid JE (2008) DC-dielectrophoretic separation of biological cells by size. Biomed Microdevices 10:243–249CrossRef Kang Y, Li D, Kalams SA, Eid JE (2008) DC-dielectrophoretic separation of biological cells by size. Biomed Microdevices 10:243–249CrossRef
Zurück zum Zitat Khoshmanesh K, Nahavandi S, Baratchi S, Mitchell A, Kalantar-zadeh K (2011) Dielectrophoretic platforms for bio-microfluidic systems. Biosens Bioelectron 26:1800–1814CrossRef Khoshmanesh K, Nahavandi S, Baratchi S, Mitchell A, Kalantar-zadeh K (2011) Dielectrophoretic platforms for bio-microfluidic systems. Biosens Bioelectron 26:1800–1814CrossRef
Zurück zum Zitat Leal LG (2006) Advanced transport phenomena: fluid mechanics and convective transport processes. Artech House, New York, pp 164–168 Leal LG (2006) Advanced transport phenomena: fluid mechanics and convective transport processes. Artech House, New York, pp 164–168
Zurück zum Zitat Lewpiriyawong N, Yang C, Lam YC (2010) Continuous sorting and separation of microparticles by size using AC dielectrophoresis in a PDMS microfluidic device with 3-D conducting PDMS composite electrodes. Electrophoresis 31:2622–2631CrossRef Lewpiriyawong N, Yang C, Lam YC (2010) Continuous sorting and separation of microparticles by size using AC dielectrophoresis in a PDMS microfluidic device with 3-D conducting PDMS composite electrodes. Electrophoresis 31:2622–2631CrossRef
Zurück zum Zitat Morgan H, Green NG (2003) AC electrokinetics: colloids and nanoparticles. Research Studies Press, London, pp 8–12 Morgan H, Green NG (2003) AC electrokinetics: colloids and nanoparticles. Research Studies Press, London, pp 8–12
Zurück zum Zitat Pohl HA (1978a) Dielectrophoresis: The behavior of neutral matter in nonuniform electric fields. Cambridge University Press, Cambridge Pohl HA (1978a) Dielectrophoresis: The behavior of neutral matter in nonuniform electric fields. Cambridge University Press, Cambridge
Zurück zum Zitat Pohl HA (1978b) Dielectrophoresis: the behavior of neutral matter in nonuniform electric fields. Cambridge University Press, Cambridge Pohl HA (1978b) Dielectrophoresis: the behavior of neutral matter in nonuniform electric fields. Cambridge University Press, Cambridge
Zurück zum Zitat Pohl H, Pollock K, Crane J (1978) Dielectrophoretic force: a comparison of theory and experiment. J Biol Phys 6:133–160CrossRef Pohl H, Pollock K, Crane J (1978) Dielectrophoretic force: a comparison of theory and experiment. J Biol Phys 6:133–160CrossRef
Zurück zum Zitat Srivastava SK, Gencoglu A, Minerick AR (2011) DC insulator dielectrophoretic applications in microdevice technology: a review. Anal Bioanal Chem 399:301–321CrossRef Srivastava SK, Gencoglu A, Minerick AR (2011) DC insulator dielectrophoretic applications in microdevice technology: a review. Anal Bioanal Chem 399:301–321CrossRef
Zurück zum Zitat Suehiro J, Zhou G, Imamura M, Hara M (2003) Dielectrophoretic filter for separation and recovery of biological cells in water. IEEE Trans Ind Appl 39:1514–1521CrossRef Suehiro J, Zhou G, Imamura M, Hara M (2003) Dielectrophoretic filter for separation and recovery of biological cells in water. IEEE Trans Ind Appl 39:1514–1521CrossRef
Zurück zum Zitat Voldman J (2006) Electrical forces for microscale cell manipulation. Annu Rev Biomed Eng 8:425–454CrossRef Voldman J (2006) Electrical forces for microscale cell manipulation. Annu Rev Biomed Eng 8:425–454CrossRef
Zurück zum Zitat Yu L, Iliescu C, Xu G, Tay FEH (2007) Sequential field-flow cell separation method in a dielectrophoretic chip with 3D electrodes. J Microelectromech Syst 16:1120–1129CrossRef Yu L, Iliescu C, Xu G, Tay FEH (2007) Sequential field-flow cell separation method in a dielectrophoretic chip with 3D electrodes. J Microelectromech Syst 16:1120–1129CrossRef
Metadaten
Titel
Design of new microchannel to reduce applied voltage for microparticles separation using dielectrophoresis method
verfasst von
Bahram Azizollah Ganji
Ali Taghadosi Aghamahalli
Publikationsdatum
16.12.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 6/2018
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-017-3669-1

Weitere Artikel der Ausgabe 6/2018

Microsystem Technologies 6/2018 Zur Ausgabe

Neuer Inhalt