Skip to main content

2022 | OriginalPaper | Buchkapitel

Design of Permanent Magnet Brushless DC Motor for Electric Vehicle Traction Application

verfasst von : Sandeep Vuddanti, Sharankumar Shastri, Surender Reddy Salkuti

Erschienen in: Recent Advances in Power Electronics and Drives

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper introduces the feasibility of the implementation of high-efficiency motors in electric vehicles (EVs) and their design. Four major areas focused on in the proposed work include the selection of motors for EV propulsion, vehicle dynamics analysis, design of the motor of desired power rating, and simulation of the motor using software tools. This paper covers the motors used for EV applications and compares them based on several criteria to choose the best among them for the desired application. The motors compared are induction motors (IM), Brushed DC motors (BDCM), and Permanent magnet brushless DC motors (PMBLDCM), among which PMBLDC motors are chosen. PMBLDC motors are high-efficiency and high-power density electrical machines with a wide range of applications. Electric vehicle drives using PMBLDC motors are one of the major areas of application for PMBLDC Motors. The vehicle understudy is chosen to be a three-wheeler, which is a widely popular, very low-cost, and common mode of transportation. The forces acting on the vehicle are assessed and the average power needed to drive the vehicle is calculated. The internal structure of the motor is studied and the motor is designed using standard formulae and the dimensions of the motor are obtained. The design parameters obtained are then inputted into motor design software. The software used here is ANSYS’s Maxwell design package. The motor parameters and the design dimensions are input into a package like ANSYS RMxprt, which gives an analytical output and then exported to Maxwell 2D (FEM-based) and simulated again to obtain various output curves.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Department of Heavy Industry, Ministry of Heavy Industries & Public Enterprises, Government of India Department of Heavy Industry, Ministry of Heavy Industries & Public Enterprises, Government of India
2.
Zurück zum Zitat Kumar BVR, Kumar KS (2016) Design of a new dual rotor radial flux Halbach array for an electric vehicle. In: IEEE international conference on power electronics, drives and energy systems, pp 1–5 Kumar BVR, Kumar KS (2016) Design of a new dual rotor radial flux Halbach array for an electric vehicle. In: IEEE international conference on power electronics, drives and energy systems, pp 1–5
3.
Zurück zum Zitat Hsieh M, Lin I, Hsu Y, McMahon RA (2012) Design of brushless doubly-fed machines based on magnetic circuit modeling. IEEE Trans Magn 48(11):3017–3020CrossRef Hsieh M, Lin I, Hsu Y, McMahon RA (2012) Design of brushless doubly-fed machines based on magnetic circuit modeling. IEEE Trans Magn 48(11):3017–3020CrossRef
4.
Zurück zum Zitat Krishnan R (2001) Electric motor drives: modeling, analysis and control. Pearson Krishnan R (2001) Electric motor drives: modeling, analysis and control. Pearson
5.
Zurück zum Zitat Lee KH, Cha HR, Kim YB (2016) Development of an interior permanent magnet motor through rotor cooling for electric vehicles. Appl Therm Eng 95:348–356CrossRef Lee KH, Cha HR, Kim YB (2016) Development of an interior permanent magnet motor through rotor cooling for electric vehicles. Appl Therm Eng 95:348–356CrossRef
6.
Zurück zum Zitat Nguyen PH, Hoang E, Gabsi M (2013) Bi-criteria optimization design of an interior permanent magnet synchronous machine for a hybrid electric vehicle application. Math Comput Simul 90:178–191MathSciNetCrossRef Nguyen PH, Hoang E, Gabsi M (2013) Bi-criteria optimization design of an interior permanent magnet synchronous machine for a hybrid electric vehicle application. Math Comput Simul 90:178–191MathSciNetCrossRef
7.
Zurück zum Zitat Boldea I, Nasar SA (2002) The induction machine handbook. CRC Press Boldea I, Nasar SA (2002) The induction machine handbook. CRC Press
8.
Zurück zum Zitat Gieras JF (2010) Permanent magnet motor technology: design and applications, 3rd edn. CRC Press Gieras JF (2010) Permanent magnet motor technology: design and applications, 3rd edn. CRC Press
9.
Zurück zum Zitat Goss J, Wrobel R, Mellor P, Staton D (2013) The design of AC permanent magnet motors for electric vehicles: a design methodology. In: International electric machines & drives conference, Chicago, IL, pp 871–878 Goss J, Wrobel R, Mellor P, Staton D (2013) The design of AC permanent magnet motors for electric vehicles: a design methodology. In: International electric machines & drives conference, Chicago, IL, pp 871–878
10.
Zurück zum Zitat Satria A, Farisi V, Rizqiawan A, Heryana N, Purwadi A, Haroen Y (2014) Synthesis modeling of 10 kW BLDC controller for city electric car based on PSIM. In: 2nd IEEE conference on power engineering and renewable energy, Bali, pp 251–256 Satria A, Farisi V, Rizqiawan A, Heryana N, Purwadi A, Haroen Y (2014) Synthesis modeling of 10 kW BLDC controller for city electric car based on PSIM. In: 2nd IEEE conference on power engineering and renewable energy, Bali, pp 251–256
11.
Zurück zum Zitat Tatimapula S (2013) Study of a parallel electric hybrid three-wheeled motor taxi. Int J Comput Appl 38–41 Tatimapula S (2013) Study of a parallel electric hybrid three-wheeled motor taxi. Int J Comput Appl 38–41
12.
Zurück zum Zitat Hendershot JR, Miller TJE (2010) Design of brushless permanent-magnet motors. Motor Design Books LLC Hendershot JR, Miller TJE (2010) Design of brushless permanent-magnet motors. Motor Design Books LLC
13.
Zurück zum Zitat Zhu ZQ, Howe D (2007) Electrical machines and drives for electric, hybrid and fuel cell vehicles. Proc IEEE 95:746–765CrossRef Zhu ZQ, Howe D (2007) Electrical machines and drives for electric, hybrid and fuel cell vehicles. Proc IEEE 95:746–765CrossRef
14.
Zurück zum Zitat Raines GB (2009) Electric motor drives for battery, hybrid and fuel cell vehicles. In: Electric vehicles: technology, research and development, Nova Science, New York, pp 1–40 Raines GB (2009) Electric motor drives for battery, hybrid and fuel cell vehicles. In: Electric vehicles: technology, research and development, Nova Science, New York, pp 1–40
15.
Zurück zum Zitat Ehsani M, Gao Y, Longo S, Ebrahimi K (2018) Modern electric, hybrid electric, and fuel cell vehicles, 3rd edn. CRC Press Ehsani M, Gao Y, Longo S, Ebrahimi K (2018) Modern electric, hybrid electric, and fuel cell vehicles, 3rd edn. CRC Press
16.
Zurück zum Zitat Larminie J, Lowry J (2012) Electric vehicle technology explained, 2nd edn. Wiley Larminie J, Lowry J (2012) Electric vehicle technology explained, 2nd edn. Wiley
17.
Zurück zum Zitat Buyukdegirmenci VT, Bazzi AM, Krein PT (2014) Evaluation of induction and permanent magnet synchronous machines using drive-cycle energy and loss minimization in traction applications. IEEE Trans Ind Appl 50:395–403CrossRef Buyukdegirmenci VT, Bazzi AM, Krein PT (2014) Evaluation of induction and permanent magnet synchronous machines using drive-cycle energy and loss minimization in traction applications. IEEE Trans Ind Appl 50:395–403CrossRef
18.
Zurück zum Zitat Cheng M, Sun L, Buja G, Song L (2015) Advanced electrical machines and machine-based systems for electric and hybrid vehicles. Energies 8:9541–9564CrossRef Cheng M, Sun L, Buja G, Song L (2015) Advanced electrical machines and machine-based systems for electric and hybrid vehicles. Energies 8:9541–9564CrossRef
19.
Zurück zum Zitat Kreuawan S, Gillon F, Brochet P (2008) Comparative study of design approach for electric machine in traction application. Int Rev Electr Eng 3(3):455–465 Kreuawan S, Gillon F, Brochet P (2008) Comparative study of design approach for electric machine in traction application. Int Rev Electr Eng 3(3):455–465
20.
Zurück zum Zitat Wang J, Xia ZP, Howe D (2005) Three-phase modular permanent magnet brushless machines for torque boosting on a downsized ICE vehicles. IEEE Trans Veh Technol 54:809–816CrossRef Wang J, Xia ZP, Howe D (2005) Three-phase modular permanent magnet brushless machines for torque boosting on a downsized ICE vehicles. IEEE Trans Veh Technol 54:809–816CrossRef
21.
Zurück zum Zitat Gu W, Zhu X, Quan L, Du Y (2015) Design and optimization of permanent magnet brushless machines for electric vehicle applications. Energies 8:13996–14008CrossRef Gu W, Zhu X, Quan L, Du Y (2015) Design and optimization of permanent magnet brushless machines for electric vehicle applications. Energies 8:13996–14008CrossRef
22.
Zurück zum Zitat Sandeep V, Shastri S (2019) Analysis and design of PMBLDC motor for three wheeler electric vehicle application. In: E3S web of conferences, vol 87, pp 1–7 Sandeep V, Shastri S (2019) Analysis and design of PMBLDC motor for three wheeler electric vehicle application. In: E3S web of conferences, vol 87, pp 1–7
24.
Zurück zum Zitat Sheikh MB, Manware PS (2016) Brushless DC motor design for electric traction system. J Res 2(4):18–22 Sheikh MB, Manware PS (2016) Brushless DC motor design for electric traction system. J Res 2(4):18–22
25.
Zurück zum Zitat Vuddanti S, Karknalli V, Salkuti SR (2021) Design and comparative analysis of three phase, four phase and six phase switched reluctance motor topologies for electrical vehicle propulsion. Bull Electr Eng Inf 10(3):1495–1504 Vuddanti S, Karknalli V, Salkuti SR (2021) Design and comparative analysis of three phase, four phase and six phase switched reluctance motor topologies for electrical vehicle propulsion. Bull Electr Eng Inf 10(3):1495–1504
26.
Zurück zum Zitat Dalcali A (2018) Optimal design of high-performance interior PM motor for electric vehicle. Int J Energy Eng Sci 3(2):26–35 Dalcali A (2018) Optimal design of high-performance interior PM motor for electric vehicle. Int J Energy Eng Sci 3(2):26–35
27.
Zurück zum Zitat Mahmoudi A, Rahim NA, Ping HW (2012) Axial-flux permanent-magnet motor design for electric vehicle direct drive using sizing equation and finite element analysis. Prog Electromagn Res 122:467–496CrossRef Mahmoudi A, Rahim NA, Ping HW (2012) Axial-flux permanent-magnet motor design for electric vehicle direct drive using sizing equation and finite element analysis. Prog Electromagn Res 122:467–496CrossRef
28.
Zurück zum Zitat Bhatt P, Mehar H, Sahajwani M (2019) Electrical motors for electric vehicle—a comparative study. In: Proceedings of recent advances in interdisciplinary trends in engineering & applications, pp 1–10 Bhatt P, Mehar H, Sahajwani M (2019) Electrical motors for electric vehicle—a comparative study. In: Proceedings of recent advances in interdisciplinary trends in engineering & applications, pp 1–10
29.
Zurück zum Zitat Huang C, Lei F, Han X, Zhang Z (2019) Determination of modeling parameters for a brushless DC motor that satisfies the power performance of an electric vehicle. Measure Control 52(7–8):765–774CrossRef Huang C, Lei F, Han X, Zhang Z (2019) Determination of modeling parameters for a brushless DC motor that satisfies the power performance of an electric vehicle. Measure Control 52(7–8):765–774CrossRef
30.
Zurück zum Zitat Sandeep V, Shastri S, Sardar A, Salkuti SR (2020) Modeling of battery pack sizing for electric vehicles. Int J Power Electr Drive Syst 11(4):1987–1994 Sandeep V, Shastri S, Sardar A, Salkuti SR (2020) Modeling of battery pack sizing for electric vehicles. Int J Power Electr Drive Syst 11(4):1987–1994
31.
Zurück zum Zitat Niapour SAKHM, Garjan GHS, Shafiei M, Feyzi MR, Danyali S, Kouhshahi MB (2014) Review of permanent-magnet brushless DC motor basic drives based on analysis and simulation study. Int Rev Electr Eng 9(5) Niapour SAKHM, Garjan GHS, Shafiei M, Feyzi MR, Danyali S, Kouhshahi MB (2014) Review of permanent-magnet brushless DC motor basic drives based on analysis and simulation study. Int Rev Electr Eng 9(5)
32.
Zurück zum Zitat Nugraha YU, Cahyadi A, Yuniarto MN, Sidharta I (2019) Design optimization for torque density in brushless DC motor with IPM V-type using PSO Method. IOP Conf Ser Mater Sci Eng 694:1–8 Nugraha YU, Cahyadi A, Yuniarto MN, Sidharta I (2019) Design optimization for torque density in brushless DC motor with IPM V-type using PSO Method. IOP Conf Ser Mater Sci Eng 694:1–8
33.
Zurück zum Zitat Salkuti SR (2019) Optimal operation of microgrid considering renewable energy sources, electric vehicles and demand response. In: E3S web of conferences, vol 87, pp 1–6 Salkuti SR (2019) Optimal operation of microgrid considering renewable energy sources, electric vehicles and demand response. In: E3S web of conferences, vol 87, pp 1–6
34.
Zurück zum Zitat Ludois DC (2017) Brushless and permanent magnet free wound field synchronous motors for EV traction, Technical report Ludois DC (2017) Brushless and permanent magnet free wound field synchronous motors for EV traction, Technical report
35.
Zurück zum Zitat Guerra AL, Icaza LA, Torres L (2018) Brushless DC motor control with unknown and variable torque load. IFAC-PapersOnLine 51(13):644–649CrossRef Guerra AL, Icaza LA, Torres L (2018) Brushless DC motor control with unknown and variable torque load. IFAC-PapersOnLine 51(13):644–649CrossRef
36.
Zurück zum Zitat Wang W, Fu R, Fan Y (2018) Electromagnetic parameters matching of permanent magnet synchronous motor for hybrid electric vehicles. IFAC-PapersOnLine 51(31):407–414CrossRef Wang W, Fu R, Fan Y (2018) Electromagnetic parameters matching of permanent magnet synchronous motor for hybrid electric vehicles. IFAC-PapersOnLine 51(31):407–414CrossRef
37.
Zurück zum Zitat Ebadpour M, Bagher M, Sharifian B, Babaei E (2018) Modeling and synchronized control of dual parallel brushless direct current motors with single inverter. Comput Electr Eng 70:229–242CrossRef Ebadpour M, Bagher M, Sharifian B, Babaei E (2018) Modeling and synchronized control of dual parallel brushless direct current motors with single inverter. Comput Electr Eng 70:229–242CrossRef
Metadaten
Titel
Design of Permanent Magnet Brushless DC Motor for Electric Vehicle Traction Application
verfasst von
Sandeep Vuddanti
Sharankumar Shastri
Surender Reddy Salkuti
Copyright-Jahr
2022
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-16-9239-0_24