Skip to main content
Erschienen in: Optical and Quantum Electronics 5/2019

01.05.2019

Design of refractive index sensing based on 2D PhC air-slot width-modulated line-defect microcavity

verfasst von: Chayma Mosbah, Ahlem Benmerkhi, Mohamed Bouchemat, Touraya Bouchemat

Erschienen in: Optical and Quantum Electronics | Ausgabe 5/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we propose an investigated sensor array based on two-dimensional photonic crystal air-slot width-modulated line-defect microcavity. This sensor consists of a waveguide coupled with microcavity. To achieve a high quality factor, we have tuned some parameters of the microcavity. The principle of sensing is based on the resonance wavelength shift when the refractive index is changed. For sensitivity analysis, we proposed various conventional designs (AD). We demonstrated that the design D has the highest sensitivity. An air-slot is created within the line-defect. The existence of the slots enhances the light-matter interactions. The simulation results are obtained by using finite-deference time-domain method. The sensitivity can achieve 400 nm/RIU, with detection limit of 2.98 × 10−5 RIU.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Adams, M., Derose, G.A., Loncar, M., Scherer, A., Adams, M., Scherer, A.: Lithographically fabricated optical cavities for refractive index sensing. J. Vac. Sci. Technol. B 23, 3168–3173 (2005)CrossRef Adams, M., Derose, G.A., Loncar, M., Scherer, A., Adams, M., Scherer, A.: Lithographically fabricated optical cavities for refractive index sensing. J. Vac. Sci. Technol. B 23, 3168–3173 (2005)CrossRef
Zurück zum Zitat Aghababaeian, H., Vadjed-Samiei, M.-H., Granpayeh, N.: Temperature stabilization of group index in silicon slotted photonic crystal waveguides. J. Opt. Soc. Korea 15, 398–402 (2011)CrossRef Aghababaeian, H., Vadjed-Samiei, M.-H., Granpayeh, N.: Temperature stabilization of group index in silicon slotted photonic crystal waveguides. J. Opt. Soc. Korea 15, 398–402 (2011)CrossRef
Zurück zum Zitat Arafa, S., Bouchemat, M., Bouchemat, T., Benmerkhi, A., Abdesselam, H.: Infiltrated photonic crystal cavity as a highly sensitive platform for glucose concentration detection. Opt. Commun. 384, 93–100 (2017)ADSCrossRef Arafa, S., Bouchemat, M., Bouchemat, T., Benmerkhi, A., Abdesselam, H.: Infiltrated photonic crystal cavity as a highly sensitive platform for glucose concentration detection. Opt. Commun. 384, 93–100 (2017)ADSCrossRef
Zurück zum Zitat Bayindir, M., Temelkuran, B., Ozbay, E.: Photonic-crystal-based beam splitters. Appl. Phys. Lett. 77, 3902–3904 (2000)ADSCrossRef Bayindir, M., Temelkuran, B., Ozbay, E.: Photonic-crystal-based beam splitters. Appl. Phys. Lett. 77, 3902–3904 (2000)ADSCrossRef
Zurück zum Zitat Benelarbi, D., Bouchemat, T., Bouchemat, M.: Study of photonic crystal microcavities coupled with waveguide for biosensing applications. Opt. Quantum Electron. 49, 1–16 (2017)CrossRef Benelarbi, D., Bouchemat, T., Bouchemat, M.: Study of photonic crystal microcavities coupled with waveguide for biosensing applications. Opt. Quantum Electron. 49, 1–16 (2017)CrossRef
Zurück zum Zitat Benmerkhi, A., Bouchemat, M., Bouchemat, T.: Influence of elliptical shaped holes on the sensitivity and Q factor in 2D photonic crystals sensor. Photonics Nanostruct. Fundam. Appl. 20, 7–17 (2016)ADSCrossRef Benmerkhi, A., Bouchemat, M., Bouchemat, T.: Influence of elliptical shaped holes on the sensitivity and Q factor in 2D photonic crystals sensor. Photonics Nanostruct. Fundam. Appl. 20, 7–17 (2016)ADSCrossRef
Zurück zum Zitat Bougriou, F., Bouchemat, T., Bouchemat, M., Paraire, N.: Optofluidic sensor using two-dimensional photonic crystal waveguides. Eur. Phys. J. Appl. Phys. 62, 11201–11205 (2013)ADSCrossRef Bougriou, F., Bouchemat, T., Bouchemat, M., Paraire, N.: Optofluidic sensor using two-dimensional photonic crystal waveguides. Eur. Phys. J. Appl. Phys. 62, 11201–11205 (2013)ADSCrossRef
Zurück zum Zitat Caër, C., Serna-Otálvaro, S.F., Zhang, W., Le Roux, X., Cassan, E.: Liquid sensor based on high-Q slot photonic crystal cavity in silicon-on-insulator configuration. Opt. Lett. 39, 5792–5794 (2014)ADSCrossRef Caër, C., Serna-Otálvaro, S.F., Zhang, W., Le Roux, X., Cassan, E.: Liquid sensor based on high-Q slot photonic crystal cavity in silicon-on-insulator configuration. Opt. Lett. 39, 5792–5794 (2014)ADSCrossRef
Zurück zum Zitat Chow, E., Grot, A., Mirkarimi, L.W., Sigalas, M., Girolami, G.: Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity. Opt. Lett. 29, 1093–1095 (2004)ADSCrossRef Chow, E., Grot, A., Mirkarimi, L.W., Sigalas, M., Girolami, G.: Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity. Opt. Lett. 29, 1093–1095 (2004)ADSCrossRef
Zurück zum Zitat Di Falco, A., Faolain, L.O., Krauss, T.F.: Photonic crystal slotted slab waveguides. Photonics Nanostruct. Fundam. Appl. 6, 38–41 (2008)ADSCrossRef Di Falco, A., Faolain, L.O., Krauss, T.F.: Photonic crystal slotted slab waveguides. Photonics Nanostruct. Fundam. Appl. 6, 38–41 (2008)ADSCrossRef
Zurück zum Zitat Dutta, H.S., Pal, S.: Design of a highly sensitive photonic crystal waveguide platform for refractive index based biosensing. Opt. Quantum Electron. 45, 907–917 (2013)CrossRef Dutta, H.S., Pal, S.: Design of a highly sensitive photonic crystal waveguide platform for refractive index based biosensing. Opt. Quantum Electron. 45, 907–917 (2013)CrossRef
Zurück zum Zitat Fan, Z., Li, S., Liu, Q., An, G., Chen, H., Li, J., Chao, D., Li, H., Zi, J., Tian, W.: High-sensitivity of refractive index sensor based on analyte-filled photonic crystal fiber with surface plasmon resonance. IEEE Photonics J. 7, 1–9 (2015)CrossRef Fan, Z., Li, S., Liu, Q., An, G., Chen, H., Li, J., Chao, D., Li, H., Zi, J., Tian, W.: High-sensitivity of refractive index sensor based on analyte-filled photonic crystal fiber with surface plasmon resonance. IEEE Photonics J. 7, 1–9 (2015)CrossRef
Zurück zum Zitat Goyal, A.K., Dutta, H.S., Pal, S.: Recent advances and progress in photonic crystal-based gas sensors. J. Phys. D. Appl. Phys. 50, 1–24 (2017)CrossRef Goyal, A.K., Dutta, H.S., Pal, S.: Recent advances and progress in photonic crystal-based gas sensors. J. Phys. D. Appl. Phys. 50, 1–24 (2017)CrossRef
Zurück zum Zitat Guo, S., Albin, S.: Simple plane wave implementation for photonic crystal calculations. Opt. Express 11, 167–175 (2003)ADSCrossRef Guo, S., Albin, S.: Simple plane wave implementation for photonic crystal calculations. Opt. Express 11, 167–175 (2003)ADSCrossRef
Zurück zum Zitat Harhouz, A., Hocini, A.: Design of high-sensitive biosensor based on cavity-waveguides coupling in 2D photonic crystal. J. Electromagn. Waves Appl. 29, 659–667 (2015)CrossRef Harhouz, A., Hocini, A.: Design of high-sensitive biosensor based on cavity-waveguides coupling in 2D photonic crystal. J. Electromagn. Waves Appl. 29, 659–667 (2015)CrossRef
Zurück zum Zitat Hamed Mirsadeghi, S., Schelew, E., Young, J.F.: Photonic crystal slot-microcavity circuit implemented in silicon-on-insulator: high Q operation in solvent without undercutting. Appl. Phys. Lett. 102, 1–5 (2013)CrossRef Hamed Mirsadeghi, S., Schelew, E., Young, J.F.: Photonic crystal slot-microcavity circuit implemented in silicon-on-insulator: high Q operation in solvent without undercutting. Appl. Phys. Lett. 102, 1–5 (2013)CrossRef
Zurück zum Zitat Hocini, A., Harhouz, A.: Modeling and analysis of the temperature sensitivity in two- dimensional photonic crystal microcavity. J. Nanophotonics 10, 1–10 (2016)CrossRef Hocini, A., Harhouz, A.: Modeling and analysis of the temperature sensitivity in two- dimensional photonic crystal microcavity. J. Nanophotonics 10, 1–10 (2016)CrossRef
Zurück zum Zitat Homola, J., Yee, S.S., Gauglitz, G.: Surface plasmon resonance sensors: review. Sensors Actuators B 54, 3–15 (1999)CrossRef Homola, J., Yee, S.S., Gauglitz, G.: Surface plasmon resonance sensors: review. Sensors Actuators B 54, 3–15 (1999)CrossRef
Zurück zum Zitat Huang, L., Tian, H., Yang, D., Zhou, J., Liu, Q., Zhang, P.: Optimization of figure of merit in label-free biochemical sensors by designing a ring defect coupled resonator. Opt. Commun. 332, 42–49 (2014)ADSCrossRef Huang, L., Tian, H., Yang, D., Zhou, J., Liu, Q., Zhang, P.: Optimization of figure of merit in label-free biochemical sensors by designing a ring defect coupled resonator. Opt. Commun. 332, 42–49 (2014)ADSCrossRef
Zurück zum Zitat Huang, L., Tian, H., Zhou, J., Liu, Q., Zhang, P., Ji, Y.: Label-free optical sensor by designing a high-Q photonic crystal ring—slot structure. Opt. Commun. 335, 73–77 (2015)ADSCrossRef Huang, L., Tian, H., Zhou, J., Liu, Q., Zhang, P., Ji, Y.: Label-free optical sensor by designing a high-Q photonic crystal ring—slot structure. Opt. Commun. 335, 73–77 (2015)ADSCrossRef
Zurück zum Zitat Jágerská, J., Zhang, H., Diao, Z., Thomas, N.Le, Houdré, R.: Refractive index sensing with an air-slot photonic crystal nanocavity. Opt. Lett. 35, 2523–2525 (2010)ADSCrossRef Jágerská, J., Zhang, H., Diao, Z., Thomas, N.Le, Houdré, R.: Refractive index sensing with an air-slot photonic crystal nanocavity. Opt. Lett. 35, 2523–2525 (2010)ADSCrossRef
Zurück zum Zitat Joannopoulos, J.D., Johnson, S.G., Winn, J.N., Meade, R.D.: Photonic Crystals: Molding the Flow of Light, 2nd edn. Princeton University Press, Princeton (2008)MATH Joannopoulos, J.D., Johnson, S.G., Winn, J.N., Meade, R.D.: Photonic Crystals: Molding the Flow of Light, 2nd edn. Princeton University Press, Princeton (2008)MATH
Zurück zum Zitat John, S., Toader, O., Busch, K.: Photonic band gap materials: a semiconductor for light. In: 4th Pacific Rim Conference on Lasers Electro-Optics, pp. 1–23 (2001) John, S., Toader, O., Busch, K.: Photonic band gap materials: a semiconductor for light. In: 4th Pacific Rim Conference on Lasers Electro-Optics, pp. 1–23 (2001)
Zurück zum Zitat Kittel, C.: Introduction to Solid State Physics. Wiley, New York (1976)MATH Kittel, C.: Introduction to Solid State Physics. Wiley, New York (1976)MATH
Zurück zum Zitat Lebbal, M.R., Boumaza, T., Bouchemat, M.: Structural study of the single-mode photonic crystal fiber. Optik 124, 4610–4613 (2013)ADSCrossRef Lebbal, M.R., Boumaza, T., Bouchemat, M.: Structural study of the single-mode photonic crystal fiber. Optik 124, 4610–4613 (2013)ADSCrossRef
Zurück zum Zitat Levi, O., Lee, M.M., Zhang, J., Lousse, V., Brueck, S.R.J., Fan, S., Harris, J.S.: Sensitivity analysis of a photonic crystal structure for index-of-refraction sensing. Proc. SPIE 6447, 1–9 (2007) Levi, O., Lee, M.M., Zhang, J., Lousse, V., Brueck, S.R.J., Fan, S., Harris, J.S.: Sensitivity analysis of a photonic crystal structure for index-of-refraction sensing. Proc. SPIE 6447, 1–9 (2007)
Zurück zum Zitat Lončar, M., Scherer, A.: Optical Microcavities. World Scientific Publishing, California Institute of Technology, Pasadena (2004) Lončar, M., Scherer, A.: Optical Microcavities. World Scientific Publishing, California Institute of Technology, Pasadena (2004)
Zurück zum Zitat Lončar, M., Nedeljković, D., Doll, T., Vučković, J., Scherer, A., Pearsall, T.P.: Waveguiding in planar photonic crystals. Appl. Phys. Lett. 77, 1937–1939 (2000)ADSCrossRef Lončar, M., Nedeljković, D., Doll, T., Vučković, J., Scherer, A., Pearsall, T.P.: Waveguiding in planar photonic crystals. Appl. Phys. Lett. 77, 1937–1939 (2000)ADSCrossRef
Zurück zum Zitat Mehmet, B., Temelkuran, B., Ozbay, E.: Propagation of photons by hopping: a waveguiding mechanism through localized coupled cavities in three-dimensional photonic crystals. Phys. Rev. B 61, 11855–11858 (2000)ADSCrossRef Mehmet, B., Temelkuran, B., Ozbay, E.: Propagation of photons by hopping: a waveguiding mechanism through localized coupled cavities in three-dimensional photonic crystals. Phys. Rev. B 61, 11855–11858 (2000)ADSCrossRef
Zurück zum Zitat Mekis, A., Chen, J.C., Kurland, I., Fan, S., Villeneuve, P.R., Joannopoulos, J.D.: High transmission through sharp bends in photonic crystal waveguides. Phys. Rev. Lett. 77, 3787–3790 (1996)ADSCrossRef Mekis, A., Chen, J.C., Kurland, I., Fan, S., Villeneuve, P.R., Joannopoulos, J.D.: High transmission through sharp bends in photonic crystal waveguides. Phys. Rev. Lett. 77, 3787–3790 (1996)ADSCrossRef
Zurück zum Zitat Mortensen, N.A., Xiao, S., Pedersen, J.: Liquid-infiltrated photonic crystals : enhanced light-matter interactions for lab-on-a-chip applications. Microfluid. Nanofluid. 4, 117–127 (2008)CrossRef Mortensen, N.A., Xiao, S., Pedersen, J.: Liquid-infiltrated photonic crystals : enhanced light-matter interactions for lab-on-a-chip applications. Microfluid. Nanofluid. 4, 117–127 (2008)CrossRef
Zurück zum Zitat Noda, S., Yokoyama, M., Imada, M., Chutinan, A., Mochizuki, M.: Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design. Science 293, 1123–1125 (2001)ADSCrossRef Noda, S., Yokoyama, M., Imada, M., Chutinan, A., Mochizuki, M.: Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design. Science 293, 1123–1125 (2001)ADSCrossRef
Zurück zum Zitat Painter, O., Lee, R.K., Scherer, A., Yariv, A., O’Brien, J.D., Dapkus, P.D., Kim, I.: Two-dimensional photonic band-gap defect mode laser. Science 284, 1819–1821 (1999)CrossRef Painter, O., Lee, R.K., Scherer, A., Yariv, A., O’Brien, J.D., Dapkus, P.D., Kim, I.: Two-dimensional photonic band-gap defect mode laser. Science 284, 1819–1821 (1999)CrossRef
Zurück zum Zitat Scullion, M.G., Di Falco, A., Krauss, T.F.: Slotted photonic crystal cavities with integrated microfluidics for biosensing applications. Biosens. Bioelectron. 27, 101–105 (2011)CrossRef Scullion, M.G., Di Falco, A., Krauss, T.F.: Slotted photonic crystal cavities with integrated microfluidics for biosensing applications. Biosens. Bioelectron. 27, 101–105 (2011)CrossRef
Zurück zum Zitat Sepúlveda, B., Calle, A., Lechuga, L.M., Armelles, G.: Highly sensitive detection of biomolecules with the magneto-optic surface-plasmon-resonance sensor. Opt. Lett. 31, 1085–1087 (2006)ADSCrossRef Sepúlveda, B., Calle, A., Lechuga, L.M., Armelles, G.: Highly sensitive detection of biomolecules with the magneto-optic surface-plasmon-resonance sensor. Opt. Lett. 31, 1085–1087 (2006)ADSCrossRef
Zurück zum Zitat Shi, S., Chen, C., Prather, D.W.: Revised plane wave method for dispersive material and its application to band structure calculations of photonic crystal slabs. Appl. Phys. Lett. 86, 1–3 (2005) Shi, S., Chen, C., Prather, D.W.: Revised plane wave method for dispersive material and its application to band structure calculations of photonic crystal slabs. Appl. Phys. Lett. 86, 1–3 (2005)
Zurück zum Zitat Sun, F., Zhou, J., Huang, L., Fu, Z., Ding, Z., Tian, H.: Design on-chip width-modulated line-defect cavity array structure for multiplexing complex refractive index sensing. Sens. Actuators A Phys. 257, 8–14 (2017)CrossRef Sun, F., Zhou, J., Huang, L., Fu, Z., Ding, Z., Tian, H.: Design on-chip width-modulated line-defect cavity array structure for multiplexing complex refractive index sensing. Sens. Actuators A Phys. 257, 8–14 (2017)CrossRef
Zurück zum Zitat Wang, B., Dündar, M.A., NöTzel, R., Karouta, F., He, S., Van Der Heijden, R.W.: Photonic crystal slot nanobeam slow light waveguides for refractive index sensing. Appl. Phys. Lett. 97, 1–3 (2010) Wang, B., Dündar, M.A., NöTzel, R., Karouta, F., He, S., Van Der Heijden, R.W.: Photonic crystal slot nanobeam slow light waveguides for refractive index sensing. Appl. Phys. Lett. 97, 1–3 (2010)
Zurück zum Zitat White, I.M., Oveys, H., Fan, X.: Liquid-core optical ring-resonator sensors. Opt. Lett. 31, 1319–1321 (2006)ADSCrossRef White, I.M., Oveys, H., Fan, X.: Liquid-core optical ring-resonator sensors. Opt. Lett. 31, 1319–1321 (2006)ADSCrossRef
Zurück zum Zitat Yablonovitch, E.: Inhibited spontaneous emission in solid state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987)ADSCrossRef Yablonovitch, E.: Inhibited spontaneous emission in solid state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987)ADSCrossRef
Zurück zum Zitat Yonekura, J., Ikeda, M., Baba, T.: Analysis of finite 2-D photonic crystals of columns and lightwave devices using the scattering matrix method. J. Lightwave Technol. 17, 1500–1508 (1999)ADSCrossRef Yonekura, J., Ikeda, M., Baba, T.: Analysis of finite 2-D photonic crystals of columns and lightwave devices using the scattering matrix method. J. Lightwave Technol. 17, 1500–1508 (1999)ADSCrossRef
Zurück zum Zitat Zhang, Y., Zhao, Y., Hu, H.: Miniature photonic crystal cavity sensor for simultaneous measurement of liquid concentration and temperature. Sens. Actuators B Chem. 216, 563–571 (2015a)CrossRef Zhang, Y., Zhao, Y., Hu, H.: Miniature photonic crystal cavity sensor for simultaneous measurement of liquid concentration and temperature. Sens. Actuators B Chem. 216, 563–571 (2015a)CrossRef
Zurück zum Zitat Zhang, Y., Zhao, Y., Li, J.: Theoretical research on slow light engineering of slotted photonic crystal waveguides with elliptical holes and optofluidic infiltration. Appl. Opt. 54, 1639–1646 (2015b)ADSCrossRef Zhang, Y., Zhao, Y., Li, J.: Theoretical research on slow light engineering of slotted photonic crystal waveguides with elliptical holes and optofluidic infiltration. Appl. Opt. 54, 1639–1646 (2015b)ADSCrossRef
Zurück zum Zitat Zhang, W., Serna, S., Le Roux, X., Vivien, L., Cassan, E.: Highly sensitive refractive index sensing by fast detuning the critical coupling condition of slot waveguide ring resonators. Opt. Lett. 41, 532–535 (2016)ADSCrossRef Zhang, W., Serna, S., Le Roux, X., Vivien, L., Cassan, E.: Highly sensitive refractive index sensing by fast detuning the critical coupling condition of slot waveguide ring resonators. Opt. Lett. 41, 532–535 (2016)ADSCrossRef
Metadaten
Titel
Design of refractive index sensing based on 2D PhC air-slot width-modulated line-defect microcavity
verfasst von
Chayma Mosbah
Ahlem Benmerkhi
Mohamed Bouchemat
Touraya Bouchemat
Publikationsdatum
01.05.2019
Verlag
Springer US
Erschienen in
Optical and Quantum Electronics / Ausgabe 5/2019
Print ISSN: 0306-8919
Elektronische ISSN: 1572-817X
DOI
https://doi.org/10.1007/s11082-019-1871-3

Weitere Artikel der Ausgabe 5/2019

Optical and Quantum Electronics 5/2019 Zur Ausgabe

Neuer Inhalt