Skip to main content

2014 | OriginalPaper | Buchkapitel

Design of Reversible Adder-Subtractor and its Mapping in Optical Computing Domain

verfasst von : Saurabh Kotiyal, Himanshu Thapliyal, Nagarajan Ranganathan

Erschienen in: Transactions on Computational Science XXIV

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Reversible logic has promising applications in dissipation less optical computing, low power computing, quantum computing, etc. Reversible circuits do not lose information, and there is a one-to-one mapping between the input and the output vectors. In recent years, researchers have implemented reversible logic gates in optical domain as it provides high-speed and low-energy computations. Reversible gates can be easily fabricated at the chip level using optical computing. The optical implementation of reversible logic gates are based on semiconductor optical amplifier (SOA)-based Mach-Zehnder interferometer (MZI). The Mach-Zehnder interferometer has advantages such as high speed, low power, easy fabrication, and fast switching time. In this work, we present the optical implementation of an n bit reversible ripple carry adder. The optical reversible adder design is based on two new optical reversible gates referred to as optical reversible gate I (ORG-I) and optical reversible gate II (ORG-II) and the existing optical Feynman gate. The two new reversible gates ORG-I and ORG-II are proposed as they can implement a reversible adder with reduced optical cost which is the measure of number of MZIs switches and the propagation delay, and with zero overhead in terms of the number of ancilla inputs and the garbage outputs. The proposed optical reversible adder design based on the ORG-I and ORG-II reversible gates are compared and shown to be better than the other existing designs of reversible adder proposed in non-optical domain in terms of the number of MZIs, delay, the number of ancilla inputs, and the garbage outputs. A subtraction operation can be defined as \(a-b=\overline{\bar{a}+b}\) and \(a-b=a+\bar{b}+1\), respectively. Next, we propose the design methodologies based on (i) \(a-b=\overline{\bar{a}+b}\), and (ii) \(a-b=a+\bar{b}+1\), to design a reversible adder-subtractor that is controlled by the control signal to perform addition or subtraction operation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Al-Zayed, A., Cherri, A.: Improved all-optical modified signed-digit adders using semiconductor optical amplifier and mach-zehnder interferometer. Opt. Laser Technol. 42(5), 810–818 (2010)CrossRef Al-Zayed, A., Cherri, A.: Improved all-optical modified signed-digit adders using semiconductor optical amplifier and mach-zehnder interferometer. Opt. Laser Technol. 42(5), 810–818 (2010)CrossRef
2.
Zurück zum Zitat Banerjee, A., Pathak, A.: Optically implementable designs of reversible sequential devices. Indian J. Phys. 84, 1063–1068 (2010)CrossRef Banerjee, A., Pathak, A.: Optically implementable designs of reversible sequential devices. Indian J. Phys. 84, 1063–1068 (2010)CrossRef
3.
Zurück zum Zitat Chattopadhyay, T.: All-optical modified fredkin gate. IEEE J. Sel. Top. Quantum Electron. PP(99), 1–8 (2011) Chattopadhyay, T.: All-optical modified fredkin gate. IEEE J. Sel. Top. Quantum Electron. PP(99), 1–8 (2011)
4.
Zurück zum Zitat Cherri, A.K., Al-Zayed, A.S.: Circuit designs of ultra-fast all-optical modified signed-digit adders using semiconductor optical amplifier and mach-zehnder interferometer. Opt. Int. J. Light Electron Opt. 121(17), 1577–1585 (2010)CrossRef Cherri, A.K., Al-Zayed, A.S.: Circuit designs of ultra-fast all-optical modified signed-digit adders using semiconductor optical amplifier and mach-zehnder interferometer. Opt. Int. J. Light Electron Opt. 121(17), 1577–1585 (2010)CrossRef
6.
Zurück zum Zitat Frank, M.: Approaching the physical limits of computing. In: Proceedings of ISMVL 2005, The Thirty-Fifth International Symposium on Multiple-Valued Logic, Calgary, Canada, pp. 168–185, May 2005 Frank, M.: Approaching the physical limits of computing. In: Proceedings of ISMVL 2005, The Thirty-Fifth International Symposium on Multiple-Valued Logic, Calgary, Canada, pp. 168–185, May 2005
8.
Zurück zum Zitat Huang, Y., Kumar, P.: Interaction-free quantum optical fredkin gates in \(\chi ^{(2)}\) microdisks. IEEE J. Sel. Top. Quantum Electron. PP(99), 1–12 (2011) Huang, Y., Kumar, P.: Interaction-free quantum optical fredkin gates in \(\chi ^{(2)}\) microdisks. IEEE J. Sel. Top. Quantum Electron. PP(99), 1–12 (2011)
9.
Zurück zum Zitat Huang, Y., Kumar, P.: Fredkin gates in \(\chi (2)\) microdisks via quantum zeno blockade. In: Nonlinear Optics: Materials, Fundamentals and Applications, p. NWE1. Optical Society of America (2011) Huang, Y., Kumar, P.: Fredkin gates in \(\chi (2)\) microdisks via quantum zeno blockade. In: Nonlinear Optics: Materials, Fundamentals and Applications, p. NWE1. Optical Society of America (2011)
10.
Zurück zum Zitat Kostinski, N., Fok, M.P., Prucnal, P.R.: Experimental demonstration of an all-optical fiber-based fredkin gate. Opt. Lett. 34(18), 2766–2768 (2009)CrossRef Kostinski, N., Fok, M.P., Prucnal, P.R.: Experimental demonstration of an all-optical fiber-based fredkin gate. Opt. Lett. 34(18), 2766–2768 (2009)CrossRef
12.
Zurück zum Zitat Kotiyal, S., Thapliyal, H., Ranganathan, N.: Mach-zehnder interferometer based design of all optical reversible binary adder. In: Design, Automation Test in Europe Conference Exhibition (DATE), 2012, pp. 721–726, March 2012 Kotiyal, S., Thapliyal, H., Ranganathan, N.: Mach-zehnder interferometer based design of all optical reversible binary adder. In: Design, Automation Test in Europe Conference Exhibition (DATE), 2012, pp. 721–726, March 2012
13.
Zurück zum Zitat Kotiyal, S., Thapliyal, H., Ranganathan, N.: Circuit for reversible quantum multiplier based on binary tree optimizing ancilla and garbage bits. In: 2014 27th International Conference on VLSI Design and 2014 13th International Conference on Embedded Systems, pp. 545–550, Jan 2014 Kotiyal, S., Thapliyal, H., Ranganathan, N.: Circuit for reversible quantum multiplier based on binary tree optimizing ancilla and garbage bits. In: 2014 27th International Conference on VLSI Design and 2014 13th International Conference on Embedded Systems, pp. 545–550, Jan 2014
14.
Zurück zum Zitat Kotiyal, S., Thapliyal, H., Ranganathan, N.: Efficient reversible NOR gates and their mapping in optical computing domain. Microelectron. J. 45(6), 825–834 (2014)CrossRef Kotiyal, S., Thapliyal, H., Ranganathan, N.: Efficient reversible NOR gates and their mapping in optical computing domain. Microelectron. J. 45(6), 825–834 (2014)CrossRef
15.
Zurück zum Zitat Chang, L., Frank, D.J., Montoye, R.K., Koester, S.J., Ji, B.L., Coteus, P.W., Dennard, R.H., Haensch, W.: Practical strategies for power-efficient computing technologies. Proc. IEEE 98(2), 215–236 (2010)CrossRef Chang, L., Frank, D.J., Montoye, R.K., Koester, S.J., Ji, B.L., Coteus, P.W., Dennard, R.H., Haensch, W.: Practical strategies for power-efficient computing technologies. Proc. IEEE 98(2), 215–236 (2010)CrossRef
16.
Zurück zum Zitat Maity, G.K., Roy, J.N., Maity, S.P.: Mach-zehnder interferometer based all-optical peres gate. In: Abraham, A., Mauri, J.L., Buford, J.F., Suzuki, J., Thampi, S.M. (eds.) ACC 2011, Part III. CCIS, vol. 192, pp. 249–258. Springer, Heidelberg (2011)CrossRef Maity, G.K., Roy, J.N., Maity, S.P.: Mach-zehnder interferometer based all-optical peres gate. In: Abraham, A., Mauri, J.L., Buford, J.F., Suzuki, J., Thampi, S.M. (eds.) ACC 2011, Part III. CCIS, vol. 192, pp. 249–258. Springer, Heidelberg (2011)CrossRef
17.
Zurück zum Zitat Maity, G., Chattopadhyay, T., Roy, J., Maity, S.: All-optical reversible multiplexer. In: 4th International Conference on Computers and Devices for Communication, 2009, CODEC 2009, pp. 1–3, Dec 2009 Maity, G., Chattopadhyay, T., Roy, J., Maity, S.: All-optical reversible multiplexer. In: 4th International Conference on Computers and Devices for Communication, 2009, CODEC 2009, pp. 1–3, Dec 2009
18.
Zurück zum Zitat Thomsen, M.K., Glück, R., Axelsen, H.B.: Reversible arithmetic logic unit for quantum arithmetic. J. Phys. A: Math. Theor. 43(38), 2002 (2010)CrossRef Thomsen, M.K., Glück, R., Axelsen, H.B.: Reversible arithmetic logic unit for quantum arithmetic. J. Phys. A: Math. Theor. 43(38), 2002 (2010)CrossRef
19.
Zurück zum Zitat Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, New York (2000)MATH Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, New York (2000)MATH
20.
Zurück zum Zitat Parhami, B.: Fault-tolerant reversible circuits. In: Proceedings of 40th Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, pp. 1726–1729, Nov 2006 Parhami, B.: Fault-tolerant reversible circuits. In: Proceedings of 40th Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, pp. 1726–1729, Nov 2006
21.
Zurück zum Zitat Taraphdara, C., Chattopadhyay, T., Roy, J.: Mach-zehnder interferometer-based all-optical reversible logic gate. Opt. Laser Technol. 42(2), 249–259 (2010)CrossRef Taraphdara, C., Chattopadhyay, T., Roy, J.: Mach-zehnder interferometer-based all-optical reversible logic gate. Opt. Laser Technol. 42(2), 249–259 (2010)CrossRef
23.
Zurück zum Zitat Thapliyal, H., Ranganathan, N.: A new reversible design of BCD adder. In: Design, Automation Test in Europe Conference Exhibition (DATE), 2011, pp. 1–4, March 2011 Thapliyal, H., Ranganathan, N.: A new reversible design of BCD adder. In: Design, Automation Test in Europe Conference Exhibition (DATE), 2011, pp. 1–4, March 2011
24.
Zurück zum Zitat Thapliyal, H., Ranganathan, N., Kotiyal, S.: Reversible logic based design and test of field coupled nanocomputing circuits. In: Anderson, N.G., Bhanja, S. (eds.) Field-Coupled Nanocomputing. LNCS, vol. 8280, pp. 133–172. Springer, Heidelberg (2014)CrossRef Thapliyal, H., Ranganathan, N., Kotiyal, S.: Reversible logic based design and test of field coupled nanocomputing circuits. In: Anderson, N.G., Bhanja, S. (eds.) Field-Coupled Nanocomputing. LNCS, vol. 8280, pp. 133–172. Springer, Heidelberg (2014)CrossRef
25.
Zurück zum Zitat Ma, X., Huang, J., Metra, C., Lombardi, F.: Reversible gates and testability of one dimensional arrays of molecular QCA. J. Elect. Test. 24(1–3), 1244–1245 (2008) Ma, X., Huang, J., Metra, C., Lombardi, F.: Reversible gates and testability of one dimensional arrays of molecular QCA. J. Elect. Test. 24(1–3), 1244–1245 (2008)
26.
Zurück zum Zitat Ma, X., Huang, J., Metra, C., Lombardi, F.: Detecting multiple faults in one-dimensional arrays of reversible QCA gates. J. Elect. Test. 25(1), 39–54 (2009)CrossRef Ma, X., Huang, J., Metra, C., Lombardi, F.: Detecting multiple faults in one-dimensional arrays of reversible QCA gates. J. Elect. Test. 25(1), 39–54 (2009)CrossRef
Metadaten
Titel
Design of Reversible Adder-Subtractor and its Mapping in Optical Computing Domain
verfasst von
Saurabh Kotiyal
Himanshu Thapliyal
Nagarajan Ranganathan
Copyright-Jahr
2014
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-45711-5_3