Skip to main content
Erschienen in: Microsystem Technologies 3/2017

20.11.2015 | Technical Paper

Design optimization of capillary-driven micromixer with square-wave microchannel for blood plasma mixing

verfasst von: Ju-Nan Kuo, Hong-Song Liao, Xiang-Ming Li

Erschienen in: Microsystem Technologies | Ausgabe 3/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A numerical and experimental investigation is performed into the flow characteristics and mixing performance of three microfluidic polydimethylsiloxane blood plasma mixing devices incorporating square-wave, curved and zigzag microchannels, respectively. For each device, the plasma is introduced into the microfluidic channel under the effects of capillary action alone. Of the three devices, that with the square-wave microchannel is found to yield the best mixing performance, and is therefore selected for design optimization. Four microfluidic micromixers incorporating square-wave microchannels with different widths in the x- and y-directions are fabricated using conventional photolithography techniques. The mixing performance of the four microchannels is investigated both numerically and experimentally. The results show that given an appropriate specification of the microchannel geometry, a mixing efficiency of approximately 76 % can be obtained within 4 s. The practical feasibility of the micromixer is demonstrated by performing prothrombin time (PT) tests using a total liquid volume of 4.0 μL (2.0 μL of plasma and 2.0 μL of PT reagent). It is shown that the mean time required to complete the entire PT test (including loading, mixing and coagulation) is less than 30 s.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Ansari MA, Kim KY (2007) Shape optimization of a micromixer with staggered herringbone groove. Chem Eng Sci 62:6687–6695CrossRef Ansari MA, Kim KY (2007) Shape optimization of a micromixer with staggered herringbone groove. Chem Eng Sci 62:6687–6695CrossRef
Zurück zum Zitat Ansari MA, Kim KY (2009) Parametric study on mixing of two fluids in a three-dimensional serpentine microchannel. Chem Eng J 146:439–448CrossRef Ansari MA, Kim KY (2009) Parametric study on mixing of two fluids in a three-dimensional serpentine microchannel. Chem Eng J 146:439–448CrossRef
Zurück zum Zitat Bertsch A, Heimgartner S, Cousseau P, Renaud P (2001) Static micromixers based on large-scale industrial mixer geometry. Lab Chip 1:56–60CrossRef Bertsch A, Heimgartner S, Cousseau P, Renaud P (2001) Static micromixers based on large-scale industrial mixer geometry. Lab Chip 1:56–60CrossRef
Zurück zum Zitat Bessoth FG, deMello AJ, Manz A (1999) Microstructure for efficient continuous flow mixing. Anal Commun 36:213–215CrossRef Bessoth FG, deMello AJ, Manz A (1999) Microstructure for efficient continuous flow mixing. Anal Commun 36:213–215CrossRef
Zurück zum Zitat Bouaidat S, Hansen O, Bruus H, Berendsen C, Bau-Madsen NK, Thomsen P, Wolff A, Jonsmann J (2005) Surface-directed capillary system; theory, experiments and applications. Lab Chip 5:827–836CrossRef Bouaidat S, Hansen O, Bruus H, Berendsen C, Bau-Madsen NK, Thomsen P, Wolff A, Jonsmann J (2005) Surface-directed capillary system; theory, experiments and applications. Lab Chip 5:827–836CrossRef
Zurück zum Zitat Chen CK, Cho CC (2007) Electrokinetically driven flow mixing in microchannels with wavy surface. J Colloid Interface Sci 312:470–480CrossRef Chen CK, Cho CC (2007) Electrokinetically driven flow mixing in microchannels with wavy surface. J Colloid Interface Sci 312:470–480CrossRef
Zurück zum Zitat Chen CF, Kung CF, Chen HC, Chu CC, Chang CC, Tseng FG (2006) A microfluidic nanoliter mixer with optimized grooved structures driven by capillary pumping. J Micromech Microeng 16:1358–1365CrossRef Chen CF, Kung CF, Chen HC, Chu CC, Chang CC, Tseng FG (2006) A microfluidic nanoliter mixer with optimized grooved structures driven by capillary pumping. J Micromech Microeng 16:1358–1365CrossRef
Zurück zum Zitat Chung CK, Shih TR (2007) Rhombic micromixer with asymmetrical flow for enhancing mixing. J Micromech Microeng 17:2495–2504CrossRef Chung CK, Shih TR (2007) Rhombic micromixer with asymmetrical flow for enhancing mixing. J Micromech Microeng 17:2495–2504CrossRef
Zurück zum Zitat Chung CK, Lai CC, Shih TR, Chang EC, Chen SW (2013) Simulation and fabrication of capillary-driven meander micromixer for short-distance mixing. Micro Nano Lett 8(10):567–570CrossRef Chung CK, Lai CC, Shih TR, Chang EC, Chen SW (2013) Simulation and fabrication of capillary-driven meander micromixer for short-distance mixing. Micro Nano Lett 8(10):567–570CrossRef
Zurück zum Zitat Daridon A, Fascio V, Lichtenberg J, Wütrich R, Langen H, Verpoorte E, de Rooij NF (2001) Multi-layer microfluidic glass chips for microanalytical applications. Fresenius J Anal Chem 371:261–269CrossRef Daridon A, Fascio V, Lichtenberg J, Wütrich R, Langen H, Verpoorte E, de Rooij NF (2001) Multi-layer microfluidic glass chips for microanalytical applications. Fresenius J Anal Chem 371:261–269CrossRef
Zurück zum Zitat Ehlers S, Elgeti K, Menzel T, Wiessmeier G (2000) Mixing in the offstream of a microchannel system. Chem Eng Process 39:291–298CrossRef Ehlers S, Elgeti K, Menzel T, Wiessmeier G (2000) Mixing in the offstream of a microchannel system. Chem Eng Process 39:291–298CrossRef
Zurück zum Zitat Erbacher C, Bessoth FG, Busch M, Verpoorte E, Manz A (1999) Towards integrated continuous-flow chemical reactors. Mikrochim Acta 131:19–24CrossRef Erbacher C, Bessoth FG, Busch M, Verpoorte E, Manz A (1999) Towards integrated continuous-flow chemical reactors. Mikrochim Acta 131:19–24CrossRef
Zurück zum Zitat Hossian S, Ansari MA, Kim KY (2009) Evaluation of the mixing performance of three passive micromixers. Chem Eng J 150:492–501CrossRef Hossian S, Ansari MA, Kim KY (2009) Evaluation of the mixing performance of three passive micromixers. Chem Eng J 150:492–501CrossRef
Zurück zum Zitat Jeon MK, Kim JH, Noh J, Kim SH, Park HG, Woo SI (2005) Design and characterization of a passive recycle micromixer. J Micromech Microeng 15:351–357CrossRef Jeon MK, Kim JH, Noh J, Kim SH, Park HG, Woo SI (2005) Design and characterization of a passive recycle micromixer. J Micromech Microeng 15:351–357CrossRef
Zurück zum Zitat Johnson TJ, Ross D, Gaitan M, Locascio LE (2001) Laser modification of preformed polymer microchannels: application to reduce band broadening around turns subject to electrokinetic flow. Anal Chem 73:3656–3661CrossRef Johnson TJ, Ross D, Gaitan M, Locascio LE (2001) Laser modification of preformed polymer microchannels: application to reduce band broadening around turns subject to electrokinetic flow. Anal Chem 73:3656–3661CrossRef
Zurück zum Zitat Kuo JN, Li BS (2014) Lab-on-CD microfluidic platform for rapid separation and mixing of plasma from whole blood. Biomed Microdevices 16:549–558CrossRef Kuo JN, Li BS (2014) Lab-on-CD microfluidic platform for rapid separation and mixing of plasma from whole blood. Biomed Microdevices 16:549–558CrossRef
Zurück zum Zitat Lahann J, Balcells M, Lu H, Rodon T, Jensen KF, Langer R (2003) Reactive polymer coatings: a first step toward surface engineering of microfluidic devices. Anal Chem 75:2117–2122CrossRef Lahann J, Balcells M, Lu H, Rodon T, Jensen KF, Langer R (2003) Reactive polymer coatings: a first step toward surface engineering of microfluidic devices. Anal Chem 75:2117–2122CrossRef
Zurück zum Zitat Liu M, Nicholson JK, Parkinson JA, Lindon JC (1997) Measurement of biomolecular diffusion coefficients in blood plasma using two-dimensional 1H–1H diffusion-edited total-correlation NMR spectroscopy. Anal Chem 69:1504–1509CrossRef Liu M, Nicholson JK, Parkinson JA, Lindon JC (1997) Measurement of biomolecular diffusion coefficients in blood plasma using two-dimensional 1H–1H diffusion-edited total-correlation NMR spectroscopy. Anal Chem 69:1504–1509CrossRef
Zurück zum Zitat Liu RH, Stremler MA, Sharp KV, Olsen MG, Santiago JG, Adrian RJ, Aref H, Beebe DJ (2000) Passive mixing in a three-dimensional serpentine microchannel. J Microelectromech Syst 9:190–197CrossRef Liu RH, Stremler MA, Sharp KV, Olsen MG, Santiago JG, Adrian RJ, Aref H, Beebe DJ (2000) Passive mixing in a three-dimensional serpentine microchannel. J Microelectromech Syst 9:190–197CrossRef
Zurück zum Zitat Lu LH, Ryu KS, Liu C (2002) A magnetic microstirrer and array for microfluidic mixing. J Microelectromech Syst 11:462–469CrossRef Lu LH, Ryu KS, Liu C (2002) A magnetic microstirrer and array for microfluidic mixing. J Microelectromech Syst 11:462–469CrossRef
Zurück zum Zitat Melin J, Gimenez G, Roxhed N, van der Wijngaart W, Stemme G (2004) A fast passive and planar liquid sample micromixer. Lab Chip 4:214–219CrossRef Melin J, Gimenez G, Roxhed N, van der Wijngaart W, Stemme G (2004) A fast passive and planar liquid sample micromixer. Lab Chip 4:214–219CrossRef
Zurück zum Zitat Nguyen NT, Wu Z (2005) Micromixers—a review. J Micromech Microeng 15:R1–R16CrossRef Nguyen NT, Wu Z (2005) Micromixers—a review. J Micromech Microeng 15:R1–R16CrossRef
Zurück zum Zitat Oddy MH, Santiago JG, Mikkelsen JC (2001) Electrokinetic instability micromixing. Anal Chem 73:5822–5832CrossRef Oddy MH, Santiago JG, Mikkelsen JC (2001) Electrokinetic instability micromixing. Anal Chem 73:5822–5832CrossRef
Zurück zum Zitat Polla DL, Erdman AG, Robbins WP, Markus DT, Diaz-Diaz J, Rizq R, Nam Y, Brickner HT, Wang A, Krulevitch P (2000) Microdevices in medicine. Annu Rev Biomed Eng 2:551–576CrossRef Polla DL, Erdman AG, Robbins WP, Markus DT, Diaz-Diaz J, Rizq R, Nam Y, Brickner HT, Wang A, Krulevitch P (2000) Microdevices in medicine. Annu Rev Biomed Eng 2:551–576CrossRef
Zurück zum Zitat Popat KC, Johnson RW, Desai TA (2003) Characterization of vapor deposited poly (ethylene glycol) films on silicon surfaces for surface modification of microfluidic systems. J Vac Sci Technol, B 21:645–654CrossRef Popat KC, Johnson RW, Desai TA (2003) Characterization of vapor deposited poly (ethylene glycol) films on silicon surfaces for surface modification of microfluidic systems. J Vac Sci Technol, B 21:645–654CrossRef
Zurück zum Zitat Prins MWJ, Welters MWJ, Weekamp JW (2001) Fluid control in multichannel structures by electrocapillary pressure. Science 291:277–280CrossRef Prins MWJ, Welters MWJ, Weekamp JW (2001) Fluid control in multichannel structures by electrocapillary pressure. Science 291:277–280CrossRef
Zurück zum Zitat Shih CH, Lu CH, Wu JH, Lin CH, Wang JM, Lin CY (2012) Prothrombin time tests on a microfluidic disc analyzer. Sens Actuators B: Chem 161:1184–1190CrossRef Shih CH, Lu CH, Wu JH, Lin CH, Wang JM, Lin CY (2012) Prothrombin time tests on a microfluidic disc analyzer. Sens Actuators B: Chem 161:1184–1190CrossRef
Zurück zum Zitat Sobolev VD, Churaev NV, Velarde MG, Zorin ZM (2000) Surface tension and dynamic contact angle of water in thin quartz capillaries. J Colloid Interface Sci 222:51–54CrossRef Sobolev VD, Churaev NV, Velarde MG, Zorin ZM (2000) Surface tension and dynamic contact angle of water in thin quartz capillaries. J Colloid Interface Sci 222:51–54CrossRef
Zurück zum Zitat Voldman J, Gray ML, Schmit MA (1999) Microfabrication in biology and medicine. Annu Rev Biomed Eng 1:401–425CrossRef Voldman J, Gray ML, Schmit MA (1999) Microfabrication in biology and medicine. Annu Rev Biomed Eng 1:401–425CrossRef
Zurück zum Zitat Voldman J, Gary ML, Schimdt MA (2000) An integrated liquid mixer/valve. J Microelectromech Syst 9:295–302CrossRef Voldman J, Gary ML, Schimdt MA (2000) An integrated liquid mixer/valve. J Microelectromech Syst 9:295–302CrossRef
Zurück zum Zitat Wong SH, Bryant P, Ward M, Wharton C (2003) Investigation of mixing in a cross-shaped micromixer with static mixing elements for reaction kinetics studies. Sens Actuators, B 95:414–424CrossRef Wong SH, Bryant P, Ward M, Wharton C (2003) Investigation of mixing in a cross-shaped micromixer with static mixing elements for reaction kinetics studies. Sens Actuators, B 95:414–424CrossRef
Zurück zum Zitat Yang JT, Lin KW (2006) Mixing and separation of two-fluid flow in a micro planner serpentine channel. J Micromech Microeng 16:2439–2448CrossRef Yang JT, Lin KW (2006) Mixing and separation of two-fluid flow in a micro planner serpentine channel. J Micromech Microeng 16:2439–2448CrossRef
Zurück zum Zitat Yang LJ, Yao TJ, Tai YC (2004) The marching velocity of the capillary meniscus in a microchannel. J Micromech Microeng 14:220–225CrossRef Yang LJ, Yao TJ, Tai YC (2004) The marching velocity of the capillary meniscus in a microchannel. J Micromech Microeng 14:220–225CrossRef
Zurück zum Zitat Yang ID, Chen YF, Tseng FG, Hsu HT, Chieng CC (2006) Surface tension driven and 3-D vortex enhanced rapid mixing microchamber. J Microelectromech Syst 15:659–670CrossRef Yang ID, Chen YF, Tseng FG, Hsu HT, Chieng CC (2006) Surface tension driven and 3-D vortex enhanced rapid mixing microchamber. J Microelectromech Syst 15:659–670CrossRef
Zurück zum Zitat Yang SY, Lin JL, Lee GB (2009) A vortex-type micromixer utilizing pneumatically driven membranes. J Micromech Microeng 19:035020CrossRef Yang SY, Lin JL, Lee GB (2009) A vortex-type micromixer utilizing pneumatically driven membranes. J Micromech Microeng 19:035020CrossRef
Zurück zum Zitat Zimmermann M, Schmid H, Hunziker P, Delamarche E (2007) Capillary pumps for autonomous capillary systems. Lab Chip 7:119–125CrossRef Zimmermann M, Schmid H, Hunziker P, Delamarche E (2007) Capillary pumps for autonomous capillary systems. Lab Chip 7:119–125CrossRef
Metadaten
Titel
Design optimization of capillary-driven micromixer with square-wave microchannel for blood plasma mixing
verfasst von
Ju-Nan Kuo
Hong-Song Liao
Xiang-Ming Li
Publikationsdatum
20.11.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 3/2017
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-015-2722-1

Weitere Artikel der Ausgabe 3/2017

Microsystem Technologies 3/2017 Zur Ausgabe

Neuer Inhalt