Skip to main content

2018 | OriginalPaper | Buchkapitel

3. Designing a Dynamic Ramp with Invariant Inductor in Current-Mode Control Circuit for Buck Converter

verfasst von : Wen-Wei Chen, Jiann-Fuh Chen

Erschienen in: Control Techniques for Power Converters with Integrated Circuit

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Current-mode control circuit is widely used to achieve better transient response, because the current-mode control circuit contains two feedback signals for a voltage loop and a current loop. A difference between the voltage-mode control circuit and current-mode control circuit, the current-mode control circuit can sense the inductor current signal which causes the control to have a better transient response. However, it also produces a subharmonic issue when the duty cycle is larger than 50%. Designing a dynamic ramp with invariant inductor in current-mode control circuit for buck converter is showed in this chapter. This configuration maintains system stability under a wide range of the input/output voltages without changing the inductor and compensation circuit. The dynamic ramp can be adjusted according to varied the output voltage or the voltage droop between the input voltage and the output voltage to maintain bandwidth and phase margin using the invariant inductor and compensation circuit. Finally, 14-V input voltage, 12-V output voltage, and 24-W output power with the dynamic ramp sampling the output voltage is implemented using MathCAD predictions, SIMPLIS simulation results, and experimental results to verify its viability and superiority.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat R.B. Ridley, A new, continuous-time model for current-mode control. IEEE Trans. Power Electron. 6, 271–280 (1991) R.B. Ridley, A new, continuous-time model for current-mode control. IEEE Trans. Power Electron. 6, 271–280 (1991)
2.
Zurück zum Zitat R.B. Ridley, A new continuous-time model for current-mode control with constant on-time, constant off-time, and discontinuous conduction mode, in Proceedings on IEEE Power Electronics Specialists Conference (1990), pp. 382–389 R.B. Ridley, A new continuous-time model for current-mode control with constant on-time, constant off-time, and discontinuous conduction mode, in Proceedings on IEEE Power Electronics Specialists Conference (1990), pp. 382–389
3.
Zurück zum Zitat J. Li, F.C. Lee, New modeling approach and equivalent circuit representation for current-mode control. IEEE Trans. Power Electron. 1218–1230 (2010) J. Li, F.C. Lee, New modeling approach and equivalent circuit representation for current-mode control. IEEE Trans. Power Electron. 1218–1230 (2010)
4.
Zurück zum Zitat R.W. Erickson, D. Maksimovic, Fundamentals of Power Electronics (Kluwer, Norwell, MA, 2001)CrossRef R.W. Erickson, D. Maksimovic, Fundamentals of Power Electronics (Kluwer, Norwell, MA, 2001)CrossRef
5.
Zurück zum Zitat R.D. Middlebrook, S. Cuk, A general unified approach to modeling switching-converter power states, in Proceedings on IEEE Power Electronics Specialists Conference (1976), pp. 73–86 R.D. Middlebrook, S. Cuk, A general unified approach to modeling switching-converter power states, in Proceedings on IEEE Power Electronics Specialists Conference (1976), pp. 73–86
6.
Zurück zum Zitat N. Mohan, W.P. Robbins, P. Imbertson, T.M. Undeland, R.C. Panaitescu, A.K. Jain, P. Jose, T. Begalke, Restructuring of first courses in power electronics and electric drives that integrates digital control. IEEE Trans. Power Electron. 18, 429–437 (2003)CrossRef N. Mohan, W.P. Robbins, P. Imbertson, T.M. Undeland, R.C. Panaitescu, A.K. Jain, P. Jose, T. Begalke, Restructuring of first courses in power electronics and electric drives that integrates digital control. IEEE Trans. Power Electron. 18, 429–437 (2003)CrossRef
7.
Zurück zum Zitat N. Mohan, Power electronics circuits: An overview, in Proceedings on IEEE Industrial Electronics Society Conference (1988), pp. 522–527 N. Mohan, Power electronics circuits: An overview, in Proceedings on IEEE Industrial Electronics Society Conference (1988), pp. 522–527
8.
Zurück zum Zitat W.H. Ki, Signal flow graph in loop gain analysis of dc-dc PWM CCM switching converters. IEEE Trans. Circ. Syst.-I 6, 644–654 (1998) W.H. Ki, Signal flow graph in loop gain analysis of dc-dc PWM CCM switching converters. IEEE Trans. Circ. Syst.-I 6, 644–654 (1998)
9.
Zurück zum Zitat W.H. Ki, Analysis of subharmonic oscillation of fixed-frequency current-programming switch mode power converters. IEEE Trans. Circ. Syst.-I 45(1), 104–108 (1998) W.H. Ki, Analysis of subharmonic oscillation of fixed-frequency current-programming switch mode power converters. IEEE Trans. Circ. Syst.-I 45(1), 104–108 (1998)
10.
Zurück zum Zitat J. Li, Current-mode control: modeling and its digital application, PHD thesis, Virginia Polytechnic Institute and State University, 2009 J. Li, Current-mode control: modeling and its digital application, PHD thesis, Virginia Polytechnic Institute and State University, 2009
11.
Zurück zum Zitat W.W. Chen, J.F. Chen, T.J. Liang, L.C. Wei, W.Y. Ting, Designing a dynamic ramp with an invariant inductor in current-mode control for an on-chip Buck converter. IEEE Trans. Power Electron. 29(2), 750–758 (2014) W.W. Chen, J.F. Chen, T.J. Liang, L.C. Wei, W.Y. Ting, Designing a dynamic ramp with an invariant inductor in current-mode control for an on-chip Buck converter. IEEE Trans. Power Electron. 29(2), 750–758 (2014)
12.
Zurück zum Zitat W.W. Chen, J.F. Chen, T. J. Liang, L. C. Wei, W.Y. Ting, Dynamic Ramp with the invariant inductor in current-mode control for Buck converter, in Proceedings on IEEE Applied Power Electronics Conference and Exposition (APEC) (2013), pp. 1244–1249 W.W. Chen, J.F. Chen, T. J. Liang, L. C. Wei, W.Y. Ting, Dynamic Ramp with the invariant inductor in current-mode control for Buck converter, in Proceedings on IEEE Applied Power Electronics Conference and Exposition (APEC) (2013), pp. 1244–1249
13.
Zurück zum Zitat W.W. Chen, J.F. Chen, T.J. Liang, Dynamic Ramp control in current-mode adaptive on-time control for Buck converter on chip, in Proceedings on IEEE Future Energy Electronics Conference and ECCE Asia (IFEEC 2017—ECCE Asia) (2017), pp. 280–285 W.W. Chen, J.F. Chen, T.J. Liang, Dynamic Ramp control in current-mode adaptive on-time control for Buck converter on chip, in Proceedings on IEEE Future Energy Electronics Conference and ECCE Asia (IFEEC 2017—ECCE Asia) (2017), pp. 280–285
14.
Zurück zum Zitat F. Tian, S. Kasemsan, I. Batarseh, An adaptive slope compensation for the single-stage inverter with peak current-mode control. IEEE Trans. Power Electron. 2857–2862 (2011) F. Tian, S. Kasemsan, I. Batarseh, An adaptive slope compensation for the single-stage inverter with peak current-mode control. IEEE Trans. Power Electron. 2857–2862 (2011)
15.
Zurück zum Zitat Z. Zansky, Current Mode Converter with Controlled Slope Compensation. United States Patent, Patent Number: 4,837,495, Date of Patent: June 6, 1989 Z. Zansky, Current Mode Converter with Controlled Slope Compensation. United States Patent, Patent Number: 4,837,495, Date of Patent: June 6, 1989
16.
Zurück zum Zitat L. Yanming, L. Xinquan, C. Fuji, Y. Bing, J. Xinzhang, An adaptive slope compensation circuit for buck DC-DC converter, in Proceeding of the International Conference on ASIC 2007, ASICON’07 (Oct 2007) pp. 608–611 L. Yanming, L. Xinquan, C. Fuji, Y. Bing, J. Xinzhang, An adaptive slope compensation circuit for buck DC-DC converter, in Proceeding of the International Conference on ASIC 2007, ASICON’07 (Oct 2007) pp. 608–611
17.
Zurück zum Zitat Richtek Tech. Corp., 2A, 22 V, 400 kHz Step-Down Converter. RT8267 Datasheet (2011) Richtek Tech. Corp., 2A, 22 V, 400 kHz Step-Down Converter. RT8267 Datasheet (2011)
18.
Zurück zum Zitat Richtek Tech. Corp., 2A, 23 V, 340 kHz Synchronous Step-Down Converter. RT8294 Datasheet (2011) Richtek Tech. Corp., 2A, 23 V, 340 kHz Synchronous Step-Down Converter. RT8294 Datasheet (2011)
19.
Zurück zum Zitat R. Redl, N.O. Sokal, Current-mode control, five different types, used with the three basic classes of power converters: Small-signal ac and large-signal dc characterization, stability requirements, and implementation of practical circuits, in Proceedings on IEEE Power Electronics Specialists Conference (1985), pp. 771–785 R. Redl, N.O. Sokal, Current-mode control, five different types, used with the three basic classes of power converters: Small-signal ac and large-signal dc characterization, stability requirements, and implementation of practical circuits, in Proceedings on IEEE Power Electronics Specialists Conference (1985), pp. 771–785
20.
Zurück zum Zitat N. Lakshminarasamma, M. Masihuzzaman, V. Ramanarayanan, Steady-state stability of current-mode active-clamp ZVS DC-DC converters. IEEE Trans. Power Electron. 26(5), 1295–1304 (2011)CrossRef N. Lakshminarasamma, M. Masihuzzaman, V. Ramanarayanan, Steady-state stability of current-mode active-clamp ZVS DC-DC converters. IEEE Trans. Power Electron. 26(5), 1295–1304 (2011)CrossRef
21.
Zurück zum Zitat B. Bryant, M.K. Kazimierczuk, Modeling the closed-current loop of PWM dc-dc converters operating in CCM with peak current-mode control. IEEE Trans. Circ. Syst.-I 52(11), 2404–2412 (2005)CrossRef B. Bryant, M.K. Kazimierczuk, Modeling the closed-current loop of PWM dc-dc converters operating in CCM with peak current-mode control. IEEE Trans. Circ. Syst.-I 52(11), 2404–2412 (2005)CrossRef
22.
Zurück zum Zitat N. Kondrath, M.K. Kazimierczuk, Control current and relative stability of peak current-mode controlled pulse-width modulated dc-dc converters without slope compensation. IET Power Electron. 3(6), 936–946 (2010)CrossRef N. Kondrath, M.K. Kazimierczuk, Control current and relative stability of peak current-mode controlled pulse-width modulated dc-dc converters without slope compensation. IET Power Electron. 3(6), 936–946 (2010)CrossRef
23.
Zurück zum Zitat M.K. Kazimierczuk, Pulse-Width Modulated DC-DC Power Converters (Wiley, 2008) M.K. Kazimierczuk, Pulse-Width Modulated DC-DC Power Converters (Wiley, 2008)
24.
Zurück zum Zitat V. Vorperian, Simplified analysis of PWM converters using model of PWM switch-I. Continuous conduction mode. IEEE Trans. Aerosp. Electron. Syst. 26(3), 490–496 (1990)CrossRef V. Vorperian, Simplified analysis of PWM converters using model of PWM switch-I. Continuous conduction mode. IEEE Trans. Aerosp. Electron. Syst. 26(3), 490–496 (1990)CrossRef
25.
Zurück zum Zitat V. Vorperian, Simplified analysis of PWM converters using model of PWM switch-II. Discontinuous conduction mode. IEEE Trans. Aerosp. Electron. Syst. 26(3), 490–496 (1990)CrossRef V. Vorperian, Simplified analysis of PWM converters using model of PWM switch-II. Discontinuous conduction mode. IEEE Trans. Aerosp. Electron. Syst. 26(3), 490–496 (1990)CrossRef
26.
Zurück zum Zitat B. Bryant, M.K. Kazimierczuk, Open-loop power-stage transfer functions relevant to current-mode control of boost PWM converter operating in CCM. IEEE Trans. Circ. Syst.-I 52(11), 2158–2164 (2005)CrossRef B. Bryant, M.K. Kazimierczuk, Open-loop power-stage transfer functions relevant to current-mode control of boost PWM converter operating in CCM. IEEE Trans. Circ. Syst.-I 52(11), 2158–2164 (2005)CrossRef
27.
Zurück zum Zitat M.M. Jovanovic, L. Huber, Small-signal modeling of nonideal magamp PWM switch. IEEE Trans. Power Electron. 14(5), 882–889 (1999) M.M. Jovanovic, L. Huber, Small-signal modeling of nonideal magamp PWM switch. IEEE Trans. Power Electron. 14(5), 882–889 (1999)
28.
Zurück zum Zitat Y. Yingyi, F.C. Lee, P. Mattavelli, Unified three-terminal switch model for current mode controls. IEEE Trans. Power Electron. 27(9), 4060–4070 (2012) Y. Yingyi, F.C. Lee, P. Mattavelli, Unified three-terminal switch model for current mode controls. IEEE Trans. Power Electron. 27(9), 4060–4070 (2012)
Metadaten
Titel
Designing a Dynamic Ramp with Invariant Inductor in Current-Mode Control Circuit for Buck Converter
verfasst von
Wen-Wei Chen
Jiann-Fuh Chen
Copyright-Jahr
2018
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-7004-4_3