Skip to main content
Erschienen in: Photonic Network Communications 3/2021

26.10.2021 | Original Paper

Designing a three-level full-adder based on nano-scale quantum dot cellular automata

verfasst von: Saeid Seyedi, Nima Jafari Navimipour

Erschienen in: Photonic Network Communications | Ausgabe 3/2021

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Some of the vital problems around the conventional CMOS technology are leakage-power consumption, physical-scalability limits, and short-channel effects. These deficiencies have led to many studies about nano-scale designs. Quantum dot cellular automata (QCA) is a potential answer in nanotechnology. Scholars have considered the four-dot squared cell as the main factor in the QCA. Also, a full-adder is a fundamental unit in every digital system. However, the importance of cell and area consumption limitation in circuit designing has been completely ignored in most of the related studies. Therefore, in this paper, we have offered a one-bit multi-layer full-adder cell. The practical accuracy of the proposed circuits has been assessed using QCADesigner. According to the obtained results and the design, the presented design has efficient cell usage against all the prior designs regarding cell counts and area occupation, leading to around 7% improvement in cell number than the common full-adder design. The simulation outcomes have also shown that the introduced design has excellent efficiency regarding cell and area aspects.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bolhassani, A., Haghparast, M.: Optimized designs of reversible arithmetic logic unit. Turk. J. Electr. Eng. Comput. Sci. 25(2), 1137–1146 (2017) Bolhassani, A., Haghparast, M.: Optimized designs of reversible arithmetic logic unit. Turk. J. Electr. Eng. Comput. Sci. 25(2), 1137–1146 (2017)
2.
Zurück zum Zitat Seyedi, S., Darbandi, M., and Navimipour, N. J.: Designing an efficient fault tolerance D-latch based on quantum-dot cellular automata nanotechnology. Optik 185, 827–837 (2019) Seyedi, S., Darbandi, M., and Navimipour, N. J.: Designing an efficient fault tolerance D-latch based on quantum-dot cellular automata nanotechnology. Optik 185, 827–837 (2019)
3.
Zurück zum Zitat Roy, K., Mukhopadhyay, S., Mahmoodi-Meimand, H.: Leakage current mechanisms and leakage reduction techniques in deep-submicrometer CMOS circuits. Proc. IEEE 91(2), 305–327 (2003) Roy, K., Mukhopadhyay, S., Mahmoodi-Meimand, H.: Leakage current mechanisms and leakage reduction techniques in deep-submicrometer CMOS circuits. Proc. IEEE 91(2), 305–327 (2003)
4.
Zurück zum Zitat Schmidt, V., Riel, H., Senz, S., Karg, S., Riess, W., Gösele, U.: Realization of a silicon nanowire vertical surround-gate field-effect transistor. Small 2(1), 85–88 (2006) Schmidt, V., Riel, H., Senz, S., Karg, S., Riess, W., Gösele, U.: Realization of a silicon nanowire vertical surround-gate field-effect transistor. Small 2(1), 85–88 (2006)
5.
Zurück zum Zitat Abu El-Seoud, A., El-Banna, M., Hakim, M.: On modelling and characterization of single electron transistor. Int. J. Electron. 94(6), 573–585 (2007) Abu El-Seoud, A., El-Banna, M., Hakim, M.: On modelling and characterization of single electron transistor. Int. J. Electron. 94(6), 573–585 (2007)
6.
Zurück zum Zitat Navi, K., Sayedsalehi, S., Farazkish, R., Azghadi, M.R.: Five-input majority gate, a new device for quantum-dot cellular automata. J. Comput. Theor. Nanosci. 7(8), 1546–1553 (2010) Navi, K., Sayedsalehi, S., Farazkish, R., Azghadi, M.R.: Five-input majority gate, a new device for quantum-dot cellular automata. J. Comput. Theor. Nanosci. 7(8), 1546–1553 (2010)
7.
Zurück zum Zitat Seyedi, S., Darbandi, M., Navimipour, N.J.: Designing an efficient fault tolerance D-latch based on quantum-dot cellular automata nanotechnology. Optik 185, 827–837 (2019) Seyedi, S., Darbandi, M., Navimipour, N.J.: Designing an efficient fault tolerance D-latch based on quantum-dot cellular automata nanotechnology. Optik 185, 827–837 (2019)
8.
Zurück zum Zitat Seyedi, S., Ghanbari, A., Navimipour, N.J.: New design of a 4-bit ripple carry adder on a nano-scale quantum-dot cellular automata. Mosc. Univ. Phys. Bull. 74(5), 494–501 (2019) Seyedi, S., Ghanbari, A., Navimipour, N.J.: New design of a 4-bit ripple carry adder on a nano-scale quantum-dot cellular automata. Mosc. Univ. Phys. Bull. 74(5), 494–501 (2019)
9.
Zurück zum Zitat Mosleh, M.: A novel design of multiplexer based on nano-scale quantum-dot cellular automata. Concurrency Computat. Pract. Exper. 31(13), e5070 (2019) Mosleh, M.: A novel design of multiplexer based on nano-scale quantum-dot cellular automata. Concurrency Computat. Pract. Exper. 31(13), e5070 (2019)
10.
Zurück zum Zitat Mohammadi, Z., Mohammadi, M.: Implementing a one-bit reversible full adder using quantum-dot cellular automata. Quantum Inf. Process. 13(9), 2127–2147 (2014)MathSciNetMATH Mohammadi, Z., Mohammadi, M.: Implementing a one-bit reversible full adder using quantum-dot cellular automata. Quantum Inf. Process. 13(9), 2127–2147 (2014)MathSciNetMATH
11.
Zurück zum Zitat Andrecut, M., Ali, M.: Entanglement dynamics in quantum cellular automata. Phys. Lett. A 326(5), 328–332 (2004)MathSciNetMATH Andrecut, M., Ali, M.: Entanglement dynamics in quantum cellular automata. Phys. Lett. A 326(5), 328–332 (2004)MathSciNetMATH
12.
Zurück zum Zitat Hasani, B., Navimipour, N. J.: A new design of a carry-save adder based on quantum-dot cellular automata. Iran. J. Sci. Technol. Trans. Electr. Eng. 45, 993–999 (2021) Hasani, B., Navimipour, N. J.: A new design of a carry-save adder based on quantum-dot cellular automata. Iran. J. Sci. Technol. Trans. Electr. Eng. 45, 993–999 (2021)
14.
Zurück zum Zitat Kim, K., Wu, K., Karri, R.: The robust QCA adder designs using composable QCA building blocks. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 1(26), 176–183 (2007) Kim, K., Wu, K., Karri, R.: The robust QCA adder designs using composable QCA building blocks. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 1(26), 176–183 (2007)
15.
Zurück zum Zitat Gadim, M.R., Navimipour, N.J.: A new three-level fault tolerance arithmetic and logic unit based on quantum dot cellular automata. Microsyst. Technol. 24, 1295–1305 (2018) Gadim, M.R., Navimipour, N.J.: A new three-level fault tolerance arithmetic and logic unit based on quantum dot cellular automata. Microsyst. Technol. 24, 1295–1305 (2018)
16.
Zurück zum Zitat Sarvaghad-Moghaddam, M., Orouji, A.A.: New symmetric and planar designs of reversible full-adders/subtractors in quantum-dot cellular automata. Eur. Phys. J. D 73(6), 125 (2019) Sarvaghad-Moghaddam, M., Orouji, A.A.: New symmetric and planar designs of reversible full-adders/subtractors in quantum-dot cellular automata. Eur. Phys. J. D 73(6), 125 (2019)
17.
Zurück zum Zitat Fam, S.R., Navimipour, N.J.: Design of a loop-based random access memory based on the nanoscale quantum dot cellular automata. Photon Netw. Commun. 37(1), 120–130 (2019) Fam, S.R., Navimipour, N.J.: Design of a loop-based random access memory based on the nanoscale quantum dot cellular automata. Photon Netw. Commun. 37(1), 120–130 (2019)
18.
Zurück zum Zitat Walus, K., Jullien, G.A.: Design tools for an emerging SoC technology: quantum-dot cellular automata. Proc. IEEE 94(6), 1225–1244 (2006) Walus, K., Jullien, G.A.: Design tools for an emerging SoC technology: quantum-dot cellular automata. Proc. IEEE 94(6), 1225–1244 (2006)
19.
Zurück zum Zitat Lent, C.S., Tougaw, P.D., Porod, W., Bernstein, G.H.: Quantum cellular automata. Nanotechnology 4(1), 49 (1993) Lent, C.S., Tougaw, P.D., Porod, W., Bernstein, G.H.: Quantum cellular automata. Nanotechnology 4(1), 49 (1993)
21.
Zurück zum Zitat Das, J.C., De, D.: Reversible priority encoder design and implementation using quantum-dot cellular automata. IET Quantum Commun. 1(2), 72–78 (2020) Das, J.C., De, D.: Reversible priority encoder design and implementation using quantum-dot cellular automata. IET Quantum Commun. 1(2), 72–78 (2020)
22.
Zurück zum Zitat Ilanchezhian, P., Parvathi, R.: Nanotechnology based effective design approach for code converter circuits using QCA. Int. J. Comput. Appl. 69(8) (2013) Ilanchezhian, P., Parvathi, R.: Nanotechnology based effective design approach for code converter circuits using QCA. Int. J. Comput. Appl. 69(8) (2013)
23.
Zurück zum Zitat Latha, K., Maharshi, M.N.: Design of adders using qca. Int. J. Adv. Eng. Technol. 6(4), 1750 (2013) Latha, K., Maharshi, M.N.: Design of adders using qca. Int. J. Adv. Eng. Technol. 6(4), 1750 (2013)
24.
Zurück zum Zitat Das, J.C., De, D.: Operational efficiency of novel SISO shift register under thermal randomness in quantum-dot cellular automata design. Microsyst. Technol. 23, 4155–4168 (2017) Das, J.C., De, D.: Operational efficiency of novel SISO shift register under thermal randomness in quantum-dot cellular automata design. Microsyst. Technol. 23, 4155–4168 (2017)
25.
Zurück zum Zitat Nejad, M.Y., Mosleh, M.: A review on QCA multiplexer designs. Majlesi J. Electr. Eng. 11(2), 69–79 (2017) Nejad, M.Y., Mosleh, M.: A review on QCA multiplexer designs. Majlesi J. Electr. Eng. 11(2), 69–79 (2017)
26.
Zurück zum Zitat Rao, N.G., Srikanth, P., Sharan, P.: A novel quantum dot cellular automata for 4-bit code converters. Optik-Int. J. Light Electron Optics 127(10), 4246–4249 (2016) Rao, N.G., Srikanth, P., Sharan, P.: A novel quantum dot cellular automata for 4-bit code converters. Optik-Int. J. Light Electron Optics 127(10), 4246–4249 (2016)
27.
Zurück zum Zitat Sen, B., Mukherjee, R., Mohit, K., Sikdar, B.K.: Design of reliable universal QCA logic in the presence of cell deposition defect. Int. J. Electron. 104(8), 1285–1297 (2017) Sen, B., Mukherjee, R., Mohit, K., Sikdar, B.K.: Design of reliable universal QCA logic in the presence of cell deposition defect. Int. J. Electron. 104(8), 1285–1297 (2017)
28.
Zurück zum Zitat Seyedi, S., Navimipour, N.J.: Design and evaluation of a new structure for fault-tolerance full-adder based on quantum-dot cellular automata. Nano Commun. Netw. 16, 1–9 (2018) Seyedi, S., Navimipour, N.J.: Design and evaluation of a new structure for fault-tolerance full-adder based on quantum-dot cellular automata. Nano Commun. Netw. 16, 1–9 (2018)
29.
Zurück zum Zitat Ahmad, F., Bhat, G.: Novel code converters based on quantum-dot cellular automata (QCA). Int. J. Sci. Res. 3(5), 364–371 (2012) Ahmad, F., Bhat, G.: Novel code converters based on quantum-dot cellular automata (QCA). Int. J. Sci. Res. 3(5), 364–371 (2012)
30.
Zurück zum Zitat Pudi, V., Sridharan, K.: Efficient design of a hybrid adder in quantum-dot cellular automata. IEEE Trans. Very Large Scale Integr (VLSI) Syst. 19(9), 1535–1548 (2010) Pudi, V., Sridharan, K.: Efficient design of a hybrid adder in quantum-dot cellular automata. IEEE Trans. Very Large Scale Integr (VLSI) Syst. 19(9), 1535–1548 (2010)
31.
Zurück zum Zitat Heikalabad, S.R., Kamrani, H.: Design and implementation of circuit-switched network based on nanoscale quantum-dot cellular automata. Photonic Netw. Commun. 38(3), 356–377 (2019) Heikalabad, S.R., Kamrani, H.: Design and implementation of circuit-switched network based on nanoscale quantum-dot cellular automata. Photonic Netw. Commun. 38(3), 356–377 (2019)
32.
Zurück zum Zitat Molahosseini, A.S., Navi, K., Dadkhah, C., Kavehei, O., Timarchi, S.: Efficient reverse converter designs for the new 4-moduli sets and based on new CRTs. IEEE Trans. Circuits Syst. I Regul. Pap. 57(4), 823–835 (2010)MathSciNetMATH Molahosseini, A.S., Navi, K., Dadkhah, C., Kavehei, O., Timarchi, S.: Efficient reverse converter designs for the new 4-moduli sets and based on new CRTs. IEEE Trans. Circuits Syst. I Regul. Pap. 57(4), 823–835 (2010)MathSciNetMATH
33.
Zurück zum Zitat Peskin, U., Abu-Hilu, M., Speiser, S.: Approaches to molecular devices based on controlled intramolecular electronic energy and electron transfer. Electron transfer rates through flexible molecular bridges by a time-dependent super exchange model. Opt. Mater. 24(1), 23–29 (2003) Peskin, U., Abu-Hilu, M., Speiser, S.: Approaches to molecular devices based on controlled intramolecular electronic energy and electron transfer. Electron transfer rates through flexible molecular bridges by a time-dependent super exchange model. Opt. Mater. 24(1), 23–29 (2003)
34.
Zurück zum Zitat Moharrami, E., Navimipour, N.J.: Designing nanoscale counter using reversible gate based on quantum-dot cellular automata. Int. J. Theor. Phys. 57, 1060–1081 (2018)CrossRefMATH Moharrami, E., Navimipour, N.J.: Designing nanoscale counter using reversible gate based on quantum-dot cellular automata. Int. J. Theor. Phys. 57, 1060–1081 (2018)CrossRefMATH
35.
Zurück zum Zitat Seyedi, S., Navimipour, N.J.: Designing a new 4:2 compressor using an efficient multi-layer full-adder based on nanoscale quantum-dot cellular automata. Int. J. Theor. Phys. 60, 2613–2626 (2021) CrossRefMATH Seyedi, S., Navimipour, N.J.: Designing a new 4:2 compressor using an efficient multi-layer full-adder based on nanoscale quantum-dot cellular automata. Int. J. Theor. Phys. 60, 2613–2626 (2021) CrossRefMATH
36.
Zurück zum Zitat Navi, K., et al.: A novel low-power full-adder cell with new technique in designing logical gates based on static CMOS inverter. Microelectron. J. 40(10), 1441–1448 (2009) Navi, K., et al.: A novel low-power full-adder cell with new technique in designing logical gates based on static CMOS inverter. Microelectron. J. 40(10), 1441–1448 (2009)
37.
Zurück zum Zitat Zhang, Y., Lv, H., Du, H., Huang, C., Liu, S., Xie, G.: Modular design of QCA carry flow adders and multiplier with reduced wire crossing and number of logic gates. Int. J. Circ. Theor. Appl. 44(7), 1351–1366 (2015) Zhang, Y., Lv, H., Du, H., Huang, C., Liu, S., Xie, G.: Modular design of QCA carry flow adders and multiplier with reduced wire crossing and number of logic gates. Int. J. Circ. Theor. Appl. 44(7), 1351–1366 (2015)
38.
Zurück zum Zitat Ghosh, B., Singh, C., Salimath, A.K.: A novel approach of full adder and arithmetic logic unit design in quantum dot cellular automata. J. Low Pow. Electron. 9(4), 452–457 (2013) Ghosh, B., Singh, C., Salimath, A.K.: A novel approach of full adder and arithmetic logic unit design in quantum dot cellular automata. J. Low Pow. Electron. 9(4), 452–457 (2013)
39.
Zurück zum Zitat Kianpour, M., Sabbaghi-Nadooshan, R.: A conventional design and simulation for CLB implementation of an FPGA quantum-dot cellular automata. Microprocess. Microsyst. 38(8), 1046–1062 (2014)MATH Kianpour, M., Sabbaghi-Nadooshan, R.: A conventional design and simulation for CLB implementation of an FPGA quantum-dot cellular automata. Microprocess. Microsyst. 38(8), 1046–1062 (2014)MATH
40.
Zurück zum Zitat Lent, C.S., Tougaw, P.D.: A device architecture for computing with quantum dots. Proc. IEEE 85(4), 541–557 (1997) Lent, C.S., Tougaw, P.D.: A device architecture for computing with quantum dots. Proc. IEEE 85(4), 541–557 (1997)
41.
Zurück zum Zitat Wang, W., Walus, K., and Jullien, G. A.: “Quantum-dot cellular automata adders,” in Nanotechnology, 2003. IEEE-NANO 2003. 2003 Third IEEE Conference on, 2003, 1, 461–464: IEEE Wang, W., Walus, K., and Jullien, G. A.: “Quantum-dot cellular automata adders,” in Nanotechnology, 2003. IEEE-NANO 2003. 2003 Third IEEE Conference on, 2003, 1, 461–464: IEEE
42.
Zurück zum Zitat Angizi, S., Alkaldy, E., Bagherzadeh, N., Navi, K.: Novel robust single layer wire crossing approach for exclusive or sum of products logic design with quantum-dot cellular automata. J. Low Pow. Electron. 10(2), 259–271 (2014) Angizi, S., Alkaldy, E., Bagherzadeh, N., Navi, K.: Novel robust single layer wire crossing approach for exclusive or sum of products logic design with quantum-dot cellular automata. J. Low Pow. Electron. 10(2), 259–271 (2014)
43.
Zurück zum Zitat Seyedi, S., Navimipour, N.J.: An optimized design of full adder based on nanoscale quantum-dot cellular automata. Optik-Int. J. Light Electron Optics 158, 243–256 (2017) Seyedi, S., Navimipour, N.J.: An optimized design of full adder based on nanoscale quantum-dot cellular automata. Optik-Int. J. Light Electron Optics 158, 243–256 (2017)
44.
Zurück zum Zitat Zhang, R., Walus, K., Wang, W., Jullien, G.A.: A method of majority logic reduction for quantum cellular automata. IEEE Trans. Nanotechnol. 3(4), 443–450 (2004) Zhang, R., Walus, K., Wang, W., Jullien, G.A.: A method of majority logic reduction for quantum cellular automata. IEEE Trans. Nanotechnol. 3(4), 443–450 (2004)
45.
Zurück zum Zitat Labrado, C., Thapliyal, H.: Design of adder and subtractor circuits in majority logic-based field-coupled QCA nanocomputing. Electron. Lett. 52(6), 464–466 (2016) Labrado, C., Thapliyal, H.: Design of adder and subtractor circuits in majority logic-based field-coupled QCA nanocomputing. Electron. Lett. 52(6), 464–466 (2016)
46.
Zurück zum Zitat Roohi, A., Khademolhosseini, H., Sayedsalehi, S., Navi, K.: A symmetric quantum-dot cellular automata design for 5-input majority gate. J. Comput. Electron. 13(3), 701–708 (2014) Roohi, A., Khademolhosseini, H., Sayedsalehi, S., Navi, K.: A symmetric quantum-dot cellular automata design for 5-input majority gate. J. Comput. Electron. 13(3), 701–708 (2014)
47.
Zurück zum Zitat Akeela, R., Wagh, M.D.: A five-input majority gate in quantum-dot cellular automata. NSTI Nanotech 2, 978–981 (2011) Akeela, R., Wagh, M.D.: A five-input majority gate in quantum-dot cellular automata. NSTI Nanotech 2, 978–981 (2011)
48.
Zurück zum Zitat Angizi, S., Sarmadi, S., Sayedsalehi, S., Navi, K.: Design and evaluation of new majority gate-based RAM cell in quantum-dot cellular automata. Microelectron. J. 46(1), 43–51 (2015) Angizi, S., Sarmadi, S., Sayedsalehi, S., Navi, K.: Design and evaluation of new majority gate-based RAM cell in quantum-dot cellular automata. Microelectron. J. 46(1), 43–51 (2015)
49.
Zurück zum Zitat Hashemi, S., Tehrani, M., Navi, K.: An efficient quantum-dot cellular automata full-adder. Sci. Res. Essays 7(2), 177–189 (2012) Hashemi, S., Tehrani, M., Navi, K.: An efficient quantum-dot cellular automata full-adder. Sci. Res. Essays 7(2), 177–189 (2012)
50.
Zurück zum Zitat Kumari, A., Bhanja, S.: Landauer clocking for magnetic cellular automata MCA arrays. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 19(4), 714–717 (2011) Kumari, A., Bhanja, S.: Landauer clocking for magnetic cellular automata MCA arrays. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 19(4), 714–717 (2011)
51.
Zurück zum Zitat Lent, C.S., Liu, M., Lu, Y.: Bennett clocking of quantum-dot cellular automata and the limits to binary logic scaling. Nanotechnology 17(16), 4240 (2006) Lent, C.S., Liu, M., Lu, Y.: Bennett clocking of quantum-dot cellular automata and the limits to binary logic scaling. Nanotechnology 17(16), 4240 (2006)
52.
Zurück zum Zitat Sayedsalehi, S., Moaiyeri, M.H., Navi, K.: Novel efficient adder circuits for quantum-dot cellular automata. J. Comput. Theor. Nanosci. 8(9), 1769–1775 (2011) Sayedsalehi, S., Moaiyeri, M.H., Navi, K.: Novel efficient adder circuits for quantum-dot cellular automata. J. Comput. Theor. Nanosci. 8(9), 1769–1775 (2011)
53.
Zurück zum Zitat Navi, K., Roohi, A., Sayedsalehi, S.: Designing reconfigurable quantum-dot cellular automata logic circuits. J. Comput. Theor. Nanosci. 10(5), 1137–1146 (2013) Navi, K., Roohi, A., Sayedsalehi, S.: Designing reconfigurable quantum-dot cellular automata logic circuits. J. Comput. Theor. Nanosci. 10(5), 1137–1146 (2013)
54.
Zurück zum Zitat Abedi, D., Jaberipur, G., Sangsefidi, M.: Coplanar full adder in quantum-dot cellular automata via clock-zone-based crossover. IEEE Trans. Nanotechnol. 14(3), 497–504 (2015) Abedi, D., Jaberipur, G., Sangsefidi, M.: Coplanar full adder in quantum-dot cellular automata via clock-zone-based crossover. IEEE Trans. Nanotechnol. 14(3), 497–504 (2015)
55.
Zurück zum Zitat Sarmadi, S., Sayedsalehi, S., Fartash, M., Angizi, S.: A structured ultra-dense QCA one-bit full-adder cell. Quant. Matt. 5(1), 118–123 (2016) Sarmadi, S., Sayedsalehi, S., Fartash, M., Angizi, S.: A structured ultra-dense QCA one-bit full-adder cell. Quant. Matt. 5(1), 118–123 (2016)
56.
Zurück zum Zitat Seyedi, S., Navimipour, N.J.: An optimized design of full adder based on nanoscale quantum-dot cellular automata. Optik 158, 243–256 (2018)MATH Seyedi, S., Navimipour, N.J.: An optimized design of full adder based on nanoscale quantum-dot cellular automata. Optik 158, 243–256 (2018)MATH
57.
Zurück zum Zitat Walus, K., Dysart, T.J., Jullien, G.A., Budiman, R.A.: QCADesigner: a rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans. Nanotechnol. 3(1), 26–31 (2004) Walus, K., Dysart, T.J., Jullien, G.A., Budiman, R.A.: QCADesigner: a rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans. Nanotechnol. 3(1), 26–31 (2004)
58.
Zurück zum Zitat Mohammadi, M., Mohammadi, M., Gorgin, S.: An efficient design of full adder in quantum-dot cellular automata (QCA) technology. Microelectron. J. 50, 35–43 (2016) Mohammadi, M., Mohammadi, M., Gorgin, S.: An efficient design of full adder in quantum-dot cellular automata (QCA) technology. Microelectron. J. 50, 35–43 (2016)
59.
Zurück zum Zitat Heikalabad, S.R., Asfestani, M.N., Hosseinzadeh, M.: A full adder structure without cross-wiring in quantum-dot cellular automata with energy dissipation analysis. J. Supercomput. 74(5), 1994–2005 (2018) Heikalabad, S.R., Asfestani, M.N., Hosseinzadeh, M.: A full adder structure without cross-wiring in quantum-dot cellular automata with energy dissipation analysis. J. Supercomput. 74(5), 1994–2005 (2018)
60.
Zurück zum Zitat Sasamal, T.N., Singh, A.K., Mohan, A.: An optimal design of full adder based on 5-input majority gate in coplanar quantum-dot cellular automata. Optik 127(20), 8576–8591 (2016) Sasamal, T.N., Singh, A.K., Mohan, A.: An optimal design of full adder based on 5-input majority gate in coplanar quantum-dot cellular automata. Optik 127(20), 8576–8591 (2016)
61.
Zurück zum Zitat Navi, K., Farazkish, R., Sayedsalehi, S., Azghadi, M.R.: A new quantum-dot cellular automata full-adder. Microelectron. J. 41(12), 820–826 (2010) Navi, K., Farazkish, R., Sayedsalehi, S., Azghadi, M.R.: A new quantum-dot cellular automata full-adder. Microelectron. J. 41(12), 820–826 (2010)
62.
Zurück zum Zitat Cho, H., Swartzlander, E.E., Jr.: Adder and multiplier design in quantum-dot cellular automata. IEEE Trans. Comput. 58(6), 721–727 (2009)MathSciNetMATH Cho, H., Swartzlander, E.E., Jr.: Adder and multiplier design in quantum-dot cellular automata. IEEE Trans. Comput. 58(6), 721–727 (2009)MathSciNetMATH
63.
Zurück zum Zitat Mohammadyan, S., Angizi, S., Navi, K.: New fully single layer QCA full-adder cell based on feedback model. Int. J. High Perform. Syst. Archit. 5(4), 202–208 (2015) Mohammadyan, S., Angizi, S., Navi, K.: New fully single layer QCA full-adder cell based on feedback model. Int. J. High Perform. Syst. Archit. 5(4), 202–208 (2015)
Metadaten
Titel
Designing a three-level full-adder based on nano-scale quantum dot cellular automata
verfasst von
Saeid Seyedi
Nima Jafari Navimipour
Publikationsdatum
26.10.2021
Verlag
Springer US
Erschienen in
Photonic Network Communications / Ausgabe 3/2021
Print ISSN: 1387-974X
Elektronische ISSN: 1572-8188
DOI
https://doi.org/10.1007/s11107-021-00949-5

Weitere Artikel der Ausgabe 3/2021

Photonic Network Communications 3/2021 Zur Ausgabe