Skip to main content
Erschienen in: Clean Technologies and Environmental Policy 4/2016

04.02.2016 | Original Paper

Designing ionic liquid solvents for carbon capture using property-based visual approach

verfasst von: Fah Keen Chong, Nishanth G. Chemmangattuvalappil, Fadwa T. Eljack, Mert Atilhan, Dominic C. Y. Foo

Erschienen in: Clean Technologies and Environmental Policy | Ausgabe 4/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Recently, ionic liquids (ILs) have been introduced as potential carbon dioxide (CO2)-capturing solvents, as a substitute to conventional amine-based solvents. Conventional amine-based solvents that are used for CO2 capture show some drawbacks, such as high solvent loss, high regeneration energy requirement, and solvent degradation. These shortcomings can be potentially overcome if IL-based solvents are considered. ILs have negligible vapour pressure, high thermal stability, and wide range of thermophysical properties. Nonetheless, using experimentation to identify suitable ILs as CO2-capturing solvents is a tedious and costly task, as there are more than a million possible combinations of cations and anions that make up the ILs. Computer-aided tools have been previously developed for targeted IL design, which often involve non-linear programming. However, non-linear programming sometimes fails to converge, due to enlarged search space for optimal solution and its complex formulations. In this paper, the authors present a simple yet systematic visual approach to design IL solvents for carbon capture. Property integration framework is employed in this approach to systematically design IL, where the design problem can be mapped from the property domain into a cluster domain through clustering technique. The advantage of the visual approach is the ability to enumerate novel IL candidates. Group contribution (GC) method is included in the framework to estimate the properties of designed ILs. By combining property integration framework and GC method, the proposed approach is able to provide a property-based platform to visualise the performance of designed ILs on a ternary diagram. A case study is presented to illustrate the validity of the proposed approach.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abu-Zahra MRM, Abbas Z, Singh P, Feron PHM (2013) Carbon dioxide post-combustion capture: solvent technologies overview, status and future directions. In: Mendez-Vilas A (ed) Materials and processes for energy: communicating current research and technological developments. Formatex Research Center, Badajoz, pp 923–934 Abu-Zahra MRM, Abbas Z, Singh P, Feron PHM (2013) Carbon dioxide post-combustion capture: solvent technologies overview, status and future directions. In: Mendez-Vilas A (ed) Materials and processes for energy: communicating current research and technological developments. Formatex Research Center, Badajoz, pp 923–934
Zurück zum Zitat Bates ED, Mayton RD, Ntai I, Davis JH (2002) CO2 capture by a task-specific ionic liquid. J Am Chem Soc 124:926–927CrossRef Bates ED, Mayton RD, Ntai I, Davis JH (2002) CO2 capture by a task-specific ionic liquid. J Am Chem Soc 124:926–927CrossRef
Zurück zum Zitat Blanchard LA, Hancu D, Beckman EJ, Brennecke JF (1999) Green processing using ionic liquids and CO2. Nature 399:28–29CrossRef Blanchard LA, Hancu D, Beckman EJ, Brennecke JF (1999) Green processing using ionic liquids and CO2. Nature 399:28–29CrossRef
Zurück zum Zitat Chávez-Islas LM, Vasquez-medrano R, Flores-tlacuahuac A (2011) Optimal molecular design of ionic liquids for high-purity bioethanol production. Ind Eng Chem Res 50:5153–5168CrossRef Chávez-Islas LM, Vasquez-medrano R, Flores-tlacuahuac A (2011) Optimal molecular design of ionic liquids for high-purity bioethanol production. Ind Eng Chem Res 50:5153–5168CrossRef
Zurück zum Zitat Chemmangattuvalappil NG, Eljack FT, Solvason CC, Eden MR (2009) A novel algorithm for molecular synthesis using enhanced property operators. Comput Chem Eng 33:636–643CrossRef Chemmangattuvalappil NG, Eljack FT, Solvason CC, Eden MR (2009) A novel algorithm for molecular synthesis using enhanced property operators. Comput Chem Eng 33:636–643CrossRef
Zurück zum Zitat Chemmangattuvalappil NG, Solvason CC, Bommareddy S, Eden MR (2010a) Reverse problem formulation approach to molecular design using property operators based on signature descriptors. Comput Chem Eng 34:2062–2071CrossRef Chemmangattuvalappil NG, Solvason CC, Bommareddy S, Eden MR (2010a) Reverse problem formulation approach to molecular design using property operators based on signature descriptors. Comput Chem Eng 34:2062–2071CrossRef
Zurück zum Zitat Chemmangattuvalappil NG, Solvason CC, Bommareddy S, Eden MR (2010b) Combined property clustering and GC+ techniques for process and product design. Comput Chem Eng 34:582–591CrossRef Chemmangattuvalappil NG, Solvason CC, Bommareddy S, Eden MR (2010b) Combined property clustering and GC+ techniques for process and product design. Comput Chem Eng 34:582–591CrossRef
Zurück zum Zitat Chong FK, Foo DCY, Eljack FT et al (2015) Ionic liquid design for enhanced carbon dioxide capture by computer-aided molecular design approach. Clean Technol Environ Policy 17:1301–1312CrossRef Chong FK, Foo DCY, Eljack FT et al (2015) Ionic liquid design for enhanced carbon dioxide capture by computer-aided molecular design approach. Clean Technol Environ Policy 17:1301–1312CrossRef
Zurück zum Zitat Eden MR, Jørgensen SB, Gani R, El-Halwagi MM (2004) A novel framework for simultaneous separation process and product design. Chem Eng Process 43:595–608CrossRef Eden MR, Jørgensen SB, Gani R, El-Halwagi MM (2004) A novel framework for simultaneous separation process and product design. Chem Eng Process 43:595–608CrossRef
Zurück zum Zitat El-Halwagi MM, Glasgow IM, Qin X, Eden MR (2004) Property integration: componentless design techniques and visualization tools. AIChE J 50:1854–1869CrossRef El-Halwagi MM, Glasgow IM, Qin X, Eden MR (2004) Property integration: componentless design techniques and visualization tools. AIChE J 50:1854–1869CrossRef
Zurück zum Zitat Eljack FT, Eden MR (2008) A systematic visual approach to molecular design via property clusters and group contribution methods. Comput Chem Eng 32:3002–3010CrossRef Eljack FT, Eden MR (2008) A systematic visual approach to molecular design via property clusters and group contribution methods. Comput Chem Eng 32:3002–3010CrossRef
Zurück zum Zitat Eljack FT, Eden MR, Kazantzi V, El-Halwagi MM (2006) Property clustering and group contribution for process and molecular design. In: Marquardt W, Pantelides C (eds) 16th European symposium on computer aided process engineering and 9th international symposium on process systems engineering. Elsevier B.V, Garmisch-Partenkirchen, pp 907–912CrossRef Eljack FT, Eden MR, Kazantzi V, El-Halwagi MM (2006) Property clustering and group contribution for process and molecular design. In: Marquardt W, Pantelides C (eds) 16th European symposium on computer aided process engineering and 9th international symposium on process systems engineering. Elsevier B.V, Garmisch-Partenkirchen, pp 907–912CrossRef
Zurück zum Zitat Eslick JC, Shulda SM, Spencer P, Camarda KV (2010) Optimization-based approaches to computational molecular design. In: Adjiman CS, Galindo A (eds) Molecular systems engineering. Wiley-VCH, Weinheim, pp 173–194 Eslick JC, Shulda SM, Spencer P, Camarda KV (2010) Optimization-based approaches to computational molecular design. In: Adjiman CS, Galindo A (eds) Molecular systems engineering. Wiley-VCH, Weinheim, pp 173–194
Zurück zum Zitat Figueroa JD, Fout T, Plasynski S et al (2008) Advances in CO2 capture technology—The U.S. Department of Energy’s Carbon Sequestration Program. Int J Greenh Gas Control 2:9–20CrossRef Figueroa JD, Fout T, Plasynski S et al (2008) Advances in CO2 capture technology—The U.S. Department of Energy’s Carbon Sequestration Program. Int J Greenh Gas Control 2:9–20CrossRef
Zurück zum Zitat Freemantle M (2010) An introduction to ionic liquids. The Royal Society of Chemistry, Cambridge Freemantle M (2010) An introduction to ionic liquids. The Royal Society of Chemistry, Cambridge
Zurück zum Zitat Gani R (2004) Chemical product design: challenges and opportunities. Comput Chem Eng 28:2441–2457CrossRef Gani R (2004) Chemical product design: challenges and opportunities. Comput Chem Eng 28:2441–2457CrossRef
Zurück zum Zitat Gardas RL, Coutinho JAP (2008a) A group contribution method for heat capacity estimation of ionic liquids. Ind Eng Chem Res 47:5751–5757CrossRef Gardas RL, Coutinho JAP (2008a) A group contribution method for heat capacity estimation of ionic liquids. Ind Eng Chem Res 47:5751–5757CrossRef
Zurück zum Zitat Gardas RL, Coutinho JAP (2008b) A group contribution method for viscosity estimation of ionic liquids. Fluid Phase Equilib 266:195–201CrossRef Gardas RL, Coutinho JAP (2008b) A group contribution method for viscosity estimation of ionic liquids. Fluid Phase Equilib 266:195–201CrossRef
Zurück zum Zitat Hada S, Herring RH, Eden MR (2013) Design of ionic liquids using property clustering and decomposition techniques. In: Kraslawski A, Turunen I (eds) 23rd European symposium on computer aided process engineering. Elsevier, Amsterdam, pp 955–960CrossRef Hada S, Herring RH, Eden MR (2013) Design of ionic liquids using property clustering and decomposition techniques. In: Kraslawski A, Turunen I (eds) 23rd European symposium on computer aided process engineering. Elsevier, Amsterdam, pp 955–960CrossRef
Zurück zum Zitat IEA (2015) World Energy Outlook Special Briefing for COP21. Paris IEA (2015) World Energy Outlook Special Briefing for COP21. Paris
Zurück zum Zitat IPCC (2007) Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change IPCC (2007) Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change
Zurück zum Zitat Karunanithi AT, Mehrkesh A (2013) Computer-aided design of tailor-made ionic liquids. AIChE J 59:4627–4640CrossRef Karunanithi AT, Mehrkesh A (2013) Computer-aided design of tailor-made ionic liquids. AIChE J 59:4627–4640CrossRef
Zurück zum Zitat Kheireddine HA, El-Halwagi MM, Elbashir NO (2013) A property-integration approach to solvent screening and conceptual design of solvent-extraction systems for recycling used lubricating oils. Clean Technol Environ Policy 15:35–44CrossRef Kheireddine HA, El-Halwagi MM, Elbashir NO (2013) A property-integration approach to solvent screening and conceptual design of solvent-extraction systems for recycling used lubricating oils. Clean Technol Environ Policy 15:35–44CrossRef
Zurück zum Zitat Kim YS, Choi WY, Jang JH et al (2005) Solubility measurement and prediction of carbon dioxide in ionic liquids. Fluid Phase Equilib 228–229:439–445CrossRef Kim YS, Choi WY, Jang JH et al (2005) Solubility measurement and prediction of carbon dioxide in ionic liquids. Fluid Phase Equilib 228–229:439–445CrossRef
Zurück zum Zitat Lei Z, Zhang J, Li Q, Chen B (2009) UNIFAC model for ionic liquids. Ind Eng Chem Res 48:2697–2704CrossRef Lei Z, Zhang J, Li Q, Chen B (2009) UNIFAC model for ionic liquids. Ind Eng Chem Res 48:2697–2704CrossRef
Zurück zum Zitat Matsuda H, Yamamoto H, Kurihara K, Tochigi K (2007) Computer-aided reverse design for ionic liquids by QSPR using descriptors of group contribution type for ionic conductivities and viscosities. Fluid Phase Equilib 261:434–443CrossRef Matsuda H, Yamamoto H, Kurihara K, Tochigi K (2007) Computer-aided reverse design for ionic liquids by QSPR using descriptors of group contribution type for ionic conductivities and viscosities. Fluid Phase Equilib 261:434–443CrossRef
Zurück zum Zitat McLeese SE, Eslick JC, Hoffmann NJ et al (2010) Design of ionic liquids via computational molecular design. Comput Chem Eng 34:1476–1480CrossRef McLeese SE, Eslick JC, Hoffmann NJ et al (2010) Design of ionic liquids via computational molecular design. Comput Chem Eng 34:1476–1480CrossRef
Zurück zum Zitat Miyafuji H (2013) Liquefaction of wood by ionic liquid treatment. In: Kadokawa J (ed) Ionic liquids—new aspects for the future. InTech, pp 299–314 Miyafuji H (2013) Liquefaction of wood by ionic liquid treatment. In: Kadokawa J (ed) Ionic liquids—new aspects for the future. InTech, pp 299–314
Zurück zum Zitat Olajire AA (2010) CO2 capture and separation technologies for end-of-pipe applications—a review. Energy 35:2610–2628CrossRef Olajire AA (2010) CO2 capture and separation technologies for end-of-pipe applications—a review. Energy 35:2610–2628CrossRef
Zurück zum Zitat Plechkova NV, Seddon KR (2008) Applications of ionic liquids in the chemical industry. Chem Soc Rev 37:123–150CrossRef Plechkova NV, Seddon KR (2008) Applications of ionic liquids in the chemical industry. Chem Soc Rev 37:123–150CrossRef
Zurück zum Zitat Qiao Y, Ma Y, Huo Y et al (2010) A group contribution method to estimate the densities of ionic liquids. J Chem Thermodyn 42:852–855CrossRef Qiao Y, Ma Y, Huo Y et al (2010) A group contribution method to estimate the densities of ionic liquids. J Chem Thermodyn 42:852–855CrossRef
Zurück zum Zitat Rafat A, Atilhan M, Kahraman R (2016) Corrosion behavior of carbon steel in CO2 saturated amine and imidazolium-, ammonium-, and phosphonium-based ionic liquid solutions. Ind Eng Chem Res 55:446–454CrossRef Rafat A, Atilhan M, Kahraman R (2016) Corrosion behavior of carbon steel in CO2 saturated amine and imidazolium-, ammonium-, and phosphonium-based ionic liquid solutions. Ind Eng Chem Res 55:446–454CrossRef
Zurück zum Zitat Rai G, Kumar A (2013) Calorimetric elucidation of ionic interactions in room temperature ionic liquid solutions. Clean Technol Environ Policy 16:1529–1536CrossRef Rai G, Kumar A (2013) Calorimetric elucidation of ionic interactions in room temperature ionic liquid solutions. Clean Technol Environ Policy 16:1529–1536CrossRef
Zurück zum Zitat Ramdin M, de Loos TW, Vlugt TJH (2012) State-of-the-art of CO2 capture with ionic liquids. Ind Eng Chem Res 51:8149–8177CrossRef Ramdin M, de Loos TW, Vlugt TJH (2012) State-of-the-art of CO2 capture with ionic liquids. Ind Eng Chem Res 51:8149–8177CrossRef
Zurück zum Zitat Rockström J, Steffen W, Noone K et al (2009) A safe operating space for humanity. Nature 461:472–475CrossRef Rockström J, Steffen W, Noone K et al (2009) A safe operating space for humanity. Nature 461:472–475CrossRef
Zurück zum Zitat Rogers RD, Seddon KR (2003) Ionic liquids—solvents of the future? Science 302:792–793CrossRef Rogers RD, Seddon KR (2003) Ionic liquids—solvents of the future? Science 302:792–793CrossRef
Zurück zum Zitat Roughton BC, Christian B, White J et al (2012) Simultaneous design of ionic liquid entrainers and energy efficient azeotropic separation processes. Comput Chem Eng 42:248–262CrossRef Roughton BC, Christian B, White J et al (2012) Simultaneous design of ionic liquid entrainers and energy efficient azeotropic separation processes. Comput Chem Eng 42:248–262CrossRef
Zurück zum Zitat Seddon KR (1997) Ionic liquids for clean technology. J Chem Technol Biotechnol 68:351–356CrossRef Seddon KR (1997) Ionic liquids for clean technology. J Chem Technol Biotechnol 68:351–356CrossRef
Zurück zum Zitat Shelley MD, El-Halwagi MM (2000) Component-less design of recovery and allocation systems: a functionality-based clustering approach. Comput Chem Eng 24:2081–2091CrossRef Shelley MD, El-Halwagi MM (2000) Component-less design of recovery and allocation systems: a functionality-based clustering approach. Comput Chem Eng 24:2081–2091CrossRef
Zurück zum Zitat Shiflett MB, Yokozeki A (2006) Solubility and diffusivity of hydrofluorocarbons in room-temperature ionic liquids. AIChE J 52:1205–1219CrossRef Shiflett MB, Yokozeki A (2006) Solubility and diffusivity of hydrofluorocarbons in room-temperature ionic liquids. AIChE J 52:1205–1219CrossRef
Zurück zum Zitat Solvason CC, Chemmangattuvalappil NG, Eljack FT, Eden MR (2009) Efficient visual mixture design of experiments using property clustering techniques. Ind Eng Chem Res 48:2245–2256CrossRef Solvason CC, Chemmangattuvalappil NG, Eljack FT, Eden MR (2009) Efficient visual mixture design of experiments using property clustering techniques. Ind Eng Chem Res 48:2245–2256CrossRef
Zurück zum Zitat Span R, Wagner W (1996) A new equation of state for carbon dioxide covering the fluid region from the triple point temperature to 1100 K at pressures up to 800 MPa. J Phys Chem Ref Data 25:1509–1596CrossRef Span R, Wagner W (1996) A new equation of state for carbon dioxide covering the fluid region from the triple point temperature to 1100 K at pressures up to 800 MPa. J Phys Chem Ref Data 25:1509–1596CrossRef
Zurück zum Zitat The Dow Chemical Company (2003) Ethanolamines The Dow Chemical Company (2003) Ethanolamines
Zurück zum Zitat U.S. Energy Information Administration (2013) International Energy Outlook 2013. Washington U.S. Energy Information Administration (2013) International Energy Outlook 2013. Washington
Zurück zum Zitat Valencia-marquez D, Flores-tlacuahuac A, Vasquez-medrano R (2012) Simultaneous optimal design of an extractive column and ionic liquid for the separation of bioethanol–water mixtures. Ind Eng Chem Res 51:5866–5880CrossRef Valencia-marquez D, Flores-tlacuahuac A, Vasquez-medrano R (2012) Simultaneous optimal design of an extractive column and ionic liquid for the separation of bioethanol–water mixtures. Ind Eng Chem Res 51:5866–5880CrossRef
Zurück zum Zitat Verevkin SP (2008) Predicting enthalpy of vaporization of ionic liquids: a simple rule for a complex property. Angew Chem Int Ed Engl 47:5071–5074CrossRef Verevkin SP (2008) Predicting enthalpy of vaporization of ionic liquids: a simple rule for a complex property. Angew Chem Int Ed Engl 47:5071–5074CrossRef
Zurück zum Zitat Wappel D, Gronald G, Kalb R, Draxler J (2010) Ionic liquids for post-combustion CO2 absorption. Int J Greenh Gas Control 4:486–494CrossRef Wappel D, Gronald G, Kalb R, Draxler J (2010) Ionic liquids for post-combustion CO2 absorption. Int J Greenh Gas Control 4:486–494CrossRef
Zurück zum Zitat Zaman M, Lee JH (2013) Carbon capture from stationary power generation sources: a review of the current status of the technologies. Korean J Chem Eng 30:1497–1526CrossRef Zaman M, Lee JH (2013) Carbon capture from stationary power generation sources: a review of the current status of the technologies. Korean J Chem Eng 30:1497–1526CrossRef
Zurück zum Zitat Zhang X, Zhang X, Dong H et al (2012) Carbon capture with ionic liquids: overview and progress. Energy Environ Sci 5:6668–6681CrossRef Zhang X, Zhang X, Dong H et al (2012) Carbon capture with ionic liquids: overview and progress. Energy Environ Sci 5:6668–6681CrossRef
Zurück zum Zitat Zhou F, Liang Y, Liu W (2009) Ionic liquid lubricants: designed chemistry for engineering applications. Chem Soc Rev 38:2590–2599CrossRef Zhou F, Liang Y, Liu W (2009) Ionic liquid lubricants: designed chemistry for engineering applications. Chem Soc Rev 38:2590–2599CrossRef
Metadaten
Titel
Designing ionic liquid solvents for carbon capture using property-based visual approach
verfasst von
Fah Keen Chong
Nishanth G. Chemmangattuvalappil
Fadwa T. Eljack
Mert Atilhan
Dominic C. Y. Foo
Publikationsdatum
04.02.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Clean Technologies and Environmental Policy / Ausgabe 4/2016
Print ISSN: 1618-954X
Elektronische ISSN: 1618-9558
DOI
https://doi.org/10.1007/s10098-016-1111-5

Weitere Artikel der Ausgabe 4/2016

Clean Technologies and Environmental Policy 4/2016 Zur Ausgabe