Skip to main content
Erschienen in: Meccanica 8/2020

11.06.2020

Designing stress for optimizing and toughening truss-like structures

verfasst von: V. Minutolo, L. Esposito, E. Sacco, M. Fraldi

Erschienen in: Meccanica | Ausgabe 8/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Optimization of materials and structures is a crucial step in the design of man-made mechanical components for a wide field of engineering applications. It also plays a key role in mechanobiology of living systems, being involved by nature across the scales, from single-cell to tissues and organs, as a strategy to minimize metabolic cost and maximize biomechanical performances. The synergy between  the continuously increasing development of high-resolution 3D printing technologies  and the possibility to predict chemical and physical properties through molecular dynamics-based numerical analyses has recently contributed to boost the use of both design and topology optimization procedures. They are employed in ab initio simulations as key strategies for deciding microstructures to improve mechanical performances and, concretely, to achieve prototypes of new material components. With this in mind, we here propose to abandon the classical approach of using a single scalar objective function employed in the classical design and topology optimization strategies, to introduce multiple quantities to be minimized, identified as the differences between material yield stress and the maximum von Mises stress. After mathematically justifying the well-posedness  of this unconventional choice for the case at hand, it is highlighted that the proposed strategy is based on the concept of "equalizing" a proper stress measure at any point of the body and, for this reason, it is baptized as Galilei’s optimization, in honor of the Italian scholar who somehow first wondered about the possibility of changing sizes of beams to have uniform internal forces and, in turn, minimum weight. By exploiting analytical solutions and ad hoc implementing a parametric finite element algorithm to be applied to a wide variety of solids with arbitrary complex structural geometries, including nested or hierarchically organized architectures, it is first demonstrated that the proposed optimization strategy roughly retraces principles invoked by nature to guide growth, remodeling and shaping of biomaterials. More importantly, by means of several benchmark examples, we finally show the proposed procedure might be also helpfully employed to conceive a new class of micro-structured, eventually 3D-printed materials exhibiting surprising post-elastic properties, such as high overall resilience and toughness, in particular obtaining a decrease of stress concentration and a slowing down of crack propagation as direct effects of the optimization, which de facto minimizes stress gradients wherever in the solid domain.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Allaire G, Jouve F, Toader AM (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194(1):363–393ADSMathSciNetMATHCrossRef Allaire G, Jouve F, Toader AM (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194(1):363–393ADSMathSciNetMATHCrossRef
2.
Zurück zum Zitat Ahrari A, Atai AA, Deb K (2015) Simultaneous topology, shape and size optimization of truss structures by fully stressed design based on evolution strategy. Eng Optim 47(8):1063–1084MathSciNetCrossRef Ahrari A, Atai AA, Deb K (2015) Simultaneous topology, shape and size optimization of truss structures by fully stressed design based on evolution strategy. Eng Optim 47(8):1063–1084MathSciNetCrossRef
3.
Zurück zum Zitat Ahrari A, Deb K (2016) An improved fully stressed design evolution strategy for layout optimization of truss structures. Comput Struct 164:127–144CrossRef Ahrari A, Deb K (2016) An improved fully stressed design evolution strategy for layout optimization of truss structures. Comput Struct 164:127–144CrossRef
4.
Zurück zum Zitat Andreasen CS, Sigmund O (2013) Topology optimization of fluid–structure-interaction problems in poroelasticity. Comput Methods in Appl Mech Eng 258:55–62 Andreasen CS, Sigmund O (2013) Topology optimization of fluid–structure-interaction problems in poroelasticity. Comput Methods in Appl Mech Eng 258:55–62
5.
Zurück zum Zitat Balduzzi G, Aminbaghai M, Sacco E, Füssl J, Eberhardsteiner J, Auricchio F (2016) Non-prismatic beams: a simple and effective Timoshenko-like model. Int J Solids Struct 90:236–250CrossRef Balduzzi G, Aminbaghai M, Sacco E, Füssl J, Eberhardsteiner J, Auricchio F (2016) Non-prismatic beams: a simple and effective Timoshenko-like model. Int J Solids Struct 90:236–250CrossRef
6.
Zurück zum Zitat Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1:193–202CrossRef Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1:193–202CrossRef
7.
Zurück zum Zitat Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71:197–224ADSMathSciNetMATHCrossRef Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71:197–224ADSMathSciNetMATHCrossRef
8.
Zurück zum Zitat Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimisation. Arch Appl Mech 69:635–654MATHCrossRef Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimisation. Arch Appl Mech 69:635–654MATHCrossRef
9.
Zurück zum Zitat Bendsøe MP, Sigmund O (2003) Topology optimization: theory, methods and applications, 2nd edn. Springer, BerlinMATH Bendsøe MP, Sigmund O (2003) Topology optimization: theory, methods and applications, 2nd edn. Springer, BerlinMATH
10.
11.
Zurück zum Zitat Bruns TE (2007) Topology optimization of convection-dominated, steady-state heat transfer problem. Int J Heat Mass Transf 50:2859–2873MATHCrossRef Bruns TE (2007) Topology optimization of convection-dominated, steady-state heat transfer problem. Int J Heat Mass Transf 50:2859–2873MATHCrossRef
12.
Zurück zum Zitat Byun JK, Hahn SY (2001) Application of topology optimization to electromagnetic system. Int J Appl Electrom 13:25–33 Byun JK, Hahn SY (2001) Application of topology optimization to electromagnetic system. Int J Appl Electrom 13:25–33
13.
Zurück zum Zitat Carotenuto AR, Cutolo A, Petrillo A, Fusco R, Arra C, Sansone M, Larobina D, Cardoso L, Fraldi M (2018) Growth and in vivo stresses traced through tumor mechanics enriched with predator-prey cells dynamics. J Mech Behav Biomed Mat 86:55–70 Carotenuto AR, Cutolo A, Petrillo A, Fusco R, Arra C, Sansone M, Larobina D, Cardoso L, Fraldi M (2018) Growth and in vivo stresses traced through tumor mechanics enriched with predator-prey cells dynamics. J Mech Behav Biomed Mat 86:55–70
14.
Zurück zum Zitat Deb K, Gulati S (2001) Design of truss-structures for minimum weight using genetic algorithms. Finite Elem Anal Des 37(5):447–465MATHCrossRef Deb K, Gulati S (2001) Design of truss-structures for minimum weight using genetic algorithms. Finite Elem Anal Des 37(5):447–465MATHCrossRef
15.
Zurück zum Zitat Deng Y, Korvink JG (2018) Self-consistent adjoint analysis for topology optimization of electromagnetic waves. J Comput Phys 361:353–376ADSMathSciNetMATHCrossRef Deng Y, Korvink JG (2018) Self-consistent adjoint analysis for topology optimization of electromagnetic waves. J Comput Phys 361:353–376ADSMathSciNetMATHCrossRef
16.
Zurück zum Zitat Dühring MB, Jensen JS, Sigmund O (2008) Acoustic design by topology optimization. J Sound Vib 317:557–575ADSCrossRef Dühring MB, Jensen JS, Sigmund O (2008) Acoustic design by topology optimization. J Sound Vib 317:557–575ADSCrossRef
17.
Zurück zum Zitat Esposito L, Cutolo A, Barile M, Lecce L, Mensitieri G, Sacco E, Fraldi M (2019) Topology optimization-guided stiffening of composites realized through automated fiber placement. Compos Part B Eng 164:309–323CrossRef Esposito L, Cutolo A, Barile M, Lecce L, Mensitieri G, Sacco E, Fraldi M (2019) Topology optimization-guided stiffening of composites realized through automated fiber placement. Compos Part B Eng 164:309–323CrossRef
18.
Zurück zum Zitat Feury C, Geradin M (1978) Optimality criteria and mathematical programming in structural weight optimization. Comput Struct 8(1):7–17MATHCrossRef Feury C, Geradin M (1978) Optimality criteria and mathematical programming in structural weight optimization. Comput Struct 8(1):7–17MATHCrossRef
19.
Zurück zum Zitat Fraldi M, Esposito L, Perrella G, Cutolo A, Cowin SC (2010) Topological optimization in hip prosthesis design. Biomech Model Mechanobiol 9(4):389–402CrossRef Fraldi M, Esposito L, Perrella G, Cutolo A, Cowin SC (2010) Topological optimization in hip prosthesis design. Biomech Model Mechanobiol 9(4):389–402CrossRef
20.
Zurück zum Zitat Jang IG, Kim IY (2008) Computational study of Wolff’s law with trabecular architecture in the human proximal femur using topology optimization. J Biomech 41:2353–2361CrossRef Jang IG, Kim IY (2008) Computational study of Wolff’s law with trabecular architecture in the human proximal femur using topology optimization. J Biomech 41:2353–2361CrossRef
21.
Zurück zum Zitat Kato J, Hoshiba H, Takase S, Terada K, Kyoya T (2015) Analytical sensitivity in topology optimization for elastoplastic composites. Struct Multidiscip Optim 52(3):507–526MathSciNetCrossRef Kato J, Hoshiba H, Takase S, Terada K, Kyoya T (2015) Analytical sensitivity in topology optimization for elastoplastic composites. Struct Multidiscip Optim 52(3):507–526MathSciNetCrossRef
22.
Zurück zum Zitat Kirsch G (1898) Die theorie der elastizitat und die bedurfnisse der festigkeitslehre. Zeitschrift des Vereines Deutscher Ingenieure 42:797–807 Kirsch G (1898) Die theorie der elastizitat und die bedurfnisse der festigkeitslehre. Zeitschrift des Vereines Deutscher Ingenieure 42:797–807
23.
Zurück zum Zitat Minutolo V, Ruocco E, Ciaramella S (2009) Isoparametric FEM vs. BEM for elastic functionally graded materials. CMES 41(1):27–48MathSciNetMATH Minutolo V, Ruocco E, Ciaramella S (2009) Isoparametric FEM vs. BEM for elastic functionally graded materials. CMES 41(1):27–48MathSciNetMATH
24.
Zurück zum Zitat Noilublao N, Bureerat S (2011) Simultaneous topology, shape and sizing optimisation of a three-dimensional slender truss tower using multiobjective evolutionary algorithms. Comput Struct 89(23–24):2531–2538CrossRef Noilublao N, Bureerat S (2011) Simultaneous topology, shape and sizing optimisation of a three-dimensional slender truss tower using multiobjective evolutionary algorithms. Comput Struct 89(23–24):2531–2538CrossRef
25.
Zurück zum Zitat Panagant N, Bureerat S (2018) Truss topology, shape and sizing optimization by fully stressed design based on hybrid grey wolf optimization and adaptive differential evolution. Eng Optim 50(10):1645–1661MathSciNetCrossRef Panagant N, Bureerat S (2018) Truss topology, shape and sizing optimization by fully stressed design based on hybrid grey wolf optimization and adaptive differential evolution. Eng Optim 50(10):1645–1661MathSciNetCrossRef
26.
Zurück zum Zitat Papadrakakis M, Lagaros N, Plevris V (2002) Multi-objective optimization of skeletal structures under static and seismic loading conditions. Eng Optim 34(6):645–669MATHCrossRef Papadrakakis M, Lagaros N, Plevris V (2002) Multi-objective optimization of skeletal structures under static and seismic loading conditions. Eng Optim 34(6):645–669MATHCrossRef
27.
Zurück zum Zitat Rahami H, Kaveh A, Gholipour Y (2008) Sizing, geometry and topology optimization of trusses via force method and genetic algorithm. Eng Struct 30(9):2360–2369CrossRef Rahami H, Kaveh A, Gholipour Y (2008) Sizing, geometry and topology optimization of trusses via force method and genetic algorithm. Eng Struct 30(9):2360–2369CrossRef
28.
Zurück zum Zitat Saka M (1990) Optimum design of pin-jointed steel structures with practical applications. J Struct Eng ASCE 116(10):2599–2620CrossRef Saka M (1990) Optimum design of pin-jointed steel structures with practical applications. J Struct Eng ASCE 116(10):2599–2620CrossRef
29.
Zurück zum Zitat Seki Y, Kad B, Benson D, Meyers MA (2010) The toucan beak: structure and mechanical response. Mater Sci Eng C 26:1412–1420CrossRef Seki Y, Kad B, Benson D, Meyers MA (2010) The toucan beak: structure and mechanical response. Mater Sci Eng C 26:1412–1420CrossRef
30.
31.
Zurück zum Zitat Stolpe M (2010) On some fundamental properties of structural topology optimization problems. Struct Multidiscip Optim 41:661–670MATHCrossRef Stolpe M (2010) On some fundamental properties of structural topology optimization problems. Struct Multidiscip Optim 41:661–670MATHCrossRef
32.
Zurück zum Zitat Subramanian V, Harion JL (2018) Topology optimization of conductive heat transfer devices—an experimental investigation. Appl Therm Eng 131:390–411CrossRef Subramanian V, Harion JL (2018) Topology optimization of conductive heat transfer devices—an experimental investigation. Appl Therm Eng 131:390–411CrossRef
33.
Zurück zum Zitat Takezawa A, Yonekura K, Koizumi Y, Zhang X, Kitamura M (2018) Isotropic Ti–6Al–4V lattice via topology optimization and electron-beam melting. Addit Manuf 22:634–642 Takezawa A, Yonekura K, Koizumi Y, Zhang X, Kitamura M (2018) Isotropic Ti–6Al–4V lattice via topology optimization and electron-beam melting. Addit Manuf 22:634–642
34.
Zurück zum Zitat Topping BHV (1983) Shape optimization of skeletal structures: a review. J Struct Eng 109:1933–1951CrossRef Topping BHV (1983) Shape optimization of skeletal structures: a review. J Struct Eng 109:1933–1951CrossRef
35.
36.
Zurück zum Zitat Wang X, Xu S, Zhou S, Xu W, Leary M, Choong P, Qian M, Brandt M, Xie YM (2016) Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review. Biomaterials 83:127–141CrossRef Wang X, Xu S, Zhou S, Xu W, Leary M, Choong P, Qian M, Brandt M, Xie YM (2016) Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review. Biomaterials 83:127–141CrossRef
37.
Zurück zum Zitat Wu CY, Tseng KY (2010) Truss structure optimization using adaptive multi-population differential evolution. Struct Multidiscip Optim 42(4):575–590CrossRef Wu CY, Tseng KY (2010) Truss structure optimization using adaptive multi-population differential evolution. Struct Multidiscip Optim 42(4):575–590CrossRef
38.
Zurück zum Zitat Xie YM, Steven GP (1993) A simple evolutionary procedure for structural optimization. Comput Struct 49:885–896CrossRef Xie YM, Steven GP (1993) A simple evolutionary procedure for structural optimization. Comput Struct 49:885–896CrossRef
39.
Zurück zum Zitat Zhou M, Rozvany G (1991) The COC algorithm, part II: topological, geometrical and generalized shape optimization. Comput Methods Appl Mech Eng 89:309–336ADSCrossRef Zhou M, Rozvany G (1991) The COC algorithm, part II: topological, geometrical and generalized shape optimization. Comput Methods Appl Mech Eng 89:309–336ADSCrossRef
Metadaten
Titel
Designing stress for optimizing and toughening truss-like structures
verfasst von
V. Minutolo
L. Esposito
E. Sacco
M. Fraldi
Publikationsdatum
11.06.2020
Verlag
Springer Netherlands
Erschienen in
Meccanica / Ausgabe 8/2020
Print ISSN: 0025-6455
Elektronische ISSN: 1572-9648
DOI
https://doi.org/10.1007/s11012-020-01189-z

Weitere Artikel der Ausgabe 8/2020

Meccanica 8/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.