Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

01.03.2015 | Regular Paper | Ausgabe 3/2015

Knowledge and Information Systems 3/2015

Detecting software design defects using relational association rule mining

Zeitschrift:
Knowledge and Information Systems > Ausgabe 3/2015
Autoren:
Gabriela Czibula, Zsuzsanna Marian, Istvan Gergely Czibula

Abstract

In this paper, we are approaching, from a machine learning perspective, the problem of automatically detecting defective software entities (classes and methods) in existing software systems, a problem of major importance during software maintenance and evolution. In order to improve the internal quality of a software system, identifying faulty entities such as classes, modules, methods is essential for software developers. As defective software entities are hard to identify, machine learning-based classification models are still developed to approach the problem of detecting software design defects. We are proposing a novel method based on relational association rule mining for detecting faulty entities in existing software systems. Relational association rules are a particular type of association rules and describe numerical orderings between attributes that commonly occur over a dataset. Our method is based on the discovery of relational association rules for identifying design defects in software. Experiments on open source software are conducted in order to detect defective classes in object-oriented software systems, and a comparison of our approach with similar existing approaches is provided. The obtained results show that our method is effective for software design defect detection and confirms the potential of our proposal.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 3/2015

Knowledge and Information Systems 3/2015 Zur Ausgabe

Premium Partner

    Bildnachweise