Skip to main content

2020 | OriginalPaper | Buchkapitel

Detecting Word Based DGA Domains Using Ensemble Models

verfasst von : P. V. Sai Charan, Sandeep K. Shukla, P. Mohan Anand

Erschienen in: Cryptology and Network Security

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Domain Generation Algorithm (DGA) is a popular technique used by many malware developers in recent times. Nowadays, DGA is an evasive technique used by many of the Advanced Persistent Threat (APT) groups and Botnets to bypass host and network-level detection mechanisms. Legacy malware developers used to hard code the IP address of control and command server in malware payload. But, this led to identifying malicious IP address by reverse engineering the malware payload. Drawbacks in this hardcoding IP mechanism led to the idea of character-based Domain Generation Algorithms, where attackers generate a list of domain names using traditional cryptographic principles of pseudo-random number generators (PRNGs). Recent advances in malware research, machine learning address this problem to a large extent. Lately, malware developers came up with a new variant of DGA called word-list based DGA. In this approach, the malware uses a set of words from the dictionary to construct meaningful substrings that resembles real domain names. In this paper, we propose a new method for detecting Word-list based DGA domain names using ensemble approaches with 15 features (both lexical and network-level). Added to this, we generated syntactic data using CTGAN (GAN-based data synthesizer that can generate synthetic data) to measure the robustness of our model. In our experiment, C5.0 stands out as the best with prediction accuracy of 0.9503 and out of 30000 synthetically generated malicious domains names, 1351 classified as benign.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Chen, X., et al.: Towards an understanding of anti-virtualization and anti-debugging behavior in modern malware. In: IEEE International Conference on Dependable Systems and Networks with FTCS and DCC (DSN), pp. 177–186. IEEE (2008) Chen, X., et al.: Towards an understanding of anti-virtualization and anti-debugging behavior in modern malware. In: IEEE International Conference on Dependable Systems and Networks with FTCS and DCC (DSN), pp. 177–186. IEEE (2008)
2.
Zurück zum Zitat Sai Charan, P.V., Gireesh Kumar, T., Mohan Anand, P.: Advance persistent threat detection using long short term memory (LSTM) neural networks. In: Somani, A.K., Ramakrishna, S., Chaudhary, A., Choudhary, C., Agarwal, B. (eds.) ICETCE 2019. CCIS, vol. 985, pp. 45–54. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-8300-7_5CrossRef Sai Charan, P.V., Gireesh Kumar, T., Mohan Anand, P.: Advance persistent threat detection using long short term memory (LSTM) neural networks. In: Somani, A.K., Ramakrishna, S., Chaudhary, A., Choudhary, C., Agarwal, B. (eds.) ICETCE 2019. CCIS, vol. 985, pp. 45–54. Springer, Singapore (2019). https://​doi.​org/​10.​1007/​978-981-13-8300-7_​5CrossRef
3.
Zurück zum Zitat Sood, A.K., Zeadally, S.: A taxonomy of domain-generation algorithms. IEEE Secur. Privacy 14(4), 46–53 (2016)CrossRef Sood, A.K., Zeadally, S.: A taxonomy of domain-generation algorithms. IEEE Secur. Privacy 14(4), 46–53 (2016)CrossRef
6.
Zurück zum Zitat Royal, P.: Analysis of the kraken botnet. Damballa, 9 April 2008 Royal, P.: Analysis of the kraken botnet. Damballa, 9 April 2008
7.
Zurück zum Zitat Shin, S., Gu, G.: Conficker and beyond: a large-scale empirical study. In: Proceedings of the 26th Annual Computer Security Applications Conference, pp. 151–160 (2010) Shin, S., Gu, G.: Conficker and beyond: a large-scale empirical study. In: Proceedings of the 26th Annual Computer Security Applications Conference, pp. 151–160 (2010)
8.
Zurück zum Zitat Mohaisen, A., Alrawi, O.: Unveiling zeus: automated classification of malware samples. In: Proceedings of the 22nd International Conference on World Wide Web, pp. 829–832 (2013) Mohaisen, A., Alrawi, O.: Unveiling zeus: automated classification of malware samples. In: Proceedings of the 22nd International Conference on World Wide Web, pp. 829–832 (2013)
9.
Zurück zum Zitat Brahara, B., Syamsuar, D., Kunang, Y.N.: Analysis of malware DNS attack on the network using domain name system indicators. J. Inf. Syst. Inform. 2(1), 131–153 (2020) Brahara, B., Syamsuar, D., Kunang, Y.N.: Analysis of malware DNS attack on the network using domain name system indicators. J. Inf. Syst. Inform. 2(1), 131–153 (2020)
10.
Zurück zum Zitat Anand, P.M., Kumar, T.G., Charan, P.S.: An Ensemble approach for algorithmically generated domain name detection using statistical and lexical analysis. Procedia Comput. Sci. 171, 1129–1136 (2020)CrossRef Anand, P.M., Kumar, T.G., Charan, P.S.: An Ensemble approach for algorithmically generated domain name detection using statistical and lexical analysis. Procedia Comput. Sci. 171, 1129–1136 (2020)CrossRef
11.
Zurück zum Zitat Berman, D.S., et al.: DGA CapsNet: 1D application of capsule networks to DGA detection. Information 10(5), 157 (2019)CrossRef Berman, D.S., et al.: DGA CapsNet: 1D application of capsule networks to DGA detection. Information 10(5), 157 (2019)CrossRef
14.
Zurück zum Zitat Fu, Y.: Using botnet technologies to counteract network traffic analysis (2017) Fu, Y.: Using botnet technologies to counteract network traffic analysis (2017)
15.
Zurück zum Zitat Yadav, S., Reddy, A.K.K., Reddy, A.N., Ranjan, S.: Detecting algorithmically generated malicious domain names. In: Proceedings of the 10th ACM SIGCOMM Conference on Internet Measurement, pp. 48–61 (2010) Yadav, S., Reddy, A.K.K., Reddy, A.N., Ranjan, S.: Detecting algorithmically generated malicious domain names. In: Proceedings of the 10th ACM SIGCOMM Conference on Internet Measurement, pp. 48–61 (2010)
16.
Zurück zum Zitat Da Luz, P.M.: Botnet detection using passive DNS. Radboud University, Nijmegen, The Netherlands (2014) Da Luz, P.M.: Botnet detection using passive DNS. Radboud University, Nijmegen, The Netherlands (2014)
17.
Zurück zum Zitat Selvi, J., Rodríguez, R.J., Soria-Olivas, E.: Detection of algorithmically generated malicious domain names using masked N-grams. Expert Syst. Appl. 124, 156–163 (2019) Selvi, J., Rodríguez, R.J., Soria-Olivas, E.: Detection of algorithmically generated malicious domain names using masked N-grams. Expert Syst. Appl. 124, 156–163 (2019)
18.
Zurück zum Zitat Plohmann, D., Yakdan, K., Klatt, M., Bader, J., Gerhards-Padilla, E.: A comprehensive measurement study of domain generating malware. In: 25th USENIX Security Symposium (USENIX Security 16), pp. 263–278 (2016) Plohmann, D., Yakdan, K., Klatt, M., Bader, J., Gerhards-Padilla, E.: A comprehensive measurement study of domain generating malware. In: 25th USENIX Security Symposium (USENIX Security 16), pp. 263–278 (2016)
19.
Zurück zum Zitat Curtin, R.R., Gardner, A.B., Grzonkowski, S., Kleymenov, A., Mosquera, A.: Detecting DGA domains with recurrent neural networks and side information. In: Proceedings of the 14th International Conference on Availability, Reliability and Security, pp. 1–10 (2019) Curtin, R.R., Gardner, A.B., Grzonkowski, S., Kleymenov, A., Mosquera, A.: Detecting DGA domains with recurrent neural networks and side information. In: Proceedings of the 14th International Conference on Availability, Reliability and Security, pp. 1–10 (2019)
20.
Zurück zum Zitat Yang, L., et al.: Detecting word-based algorithmically generated domains using semantic analysis. Symmetry 11(2), 176 (2019) CrossRef Yang, L., et al.: Detecting word-based algorithmically generated domains using semantic analysis. Symmetry 11(2), 176 (2019) CrossRef
21.
Zurück zum Zitat Woodbridge, J., Anderson, H.S., Ahuja, A., Grant, D.: Predicting domain generation algorithms with long short-term memory networks. arXiv preprint arXiv:1611.00791 (2016) Woodbridge, J., Anderson, H.S., Ahuja, A., Grant, D.: Predicting domain generation algorithms with long short-term memory networks. arXiv preprint arXiv:​1611.​00791 (2016)
22.
Zurück zum Zitat Choi, H., Lee, H., Kim, H.: BotGAD: detecting botnets by capturing group activities in network traffic. In: Proceedings of the Fourth International ICST Conference on COMmunication System softWAre and middlewaRE, pp. 1–8 (2009) Choi, H., Lee, H., Kim, H.: BotGAD: detecting botnets by capturing group activities in network traffic. In: Proceedings of the Fourth International ICST Conference on COMmunication System softWAre and middlewaRE, pp. 1–8 (2009)
23.
Zurück zum Zitat Abbink, J., Doerr, C.: Popularity-based detection of domain generation algorithms. In: Proceedings of the 12th International Conference on Availability, Reliability and Security, pp. 1–8 (2017) Abbink, J., Doerr, C.: Popularity-based detection of domain generation algorithms. In: Proceedings of the 12th International Conference on Availability, Reliability and Security, pp. 1–8 (2017)
27.
Zurück zum Zitat Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. Chemometr. Intell. Lab. Syst. 2(1–3), 37–52 (1987)CrossRef Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. Chemometr. Intell. Lab. Syst. 2(1–3), 37–52 (1987)CrossRef
28.
Zurück zum Zitat De la Porte, J., Herbst, B.M., Hereman, W., Van Der Walt, S.J.: An introduction to diffusion maps. In: Proceedings of the 19th Symposium of the Pattern Recognition Association of South Africa (PRASA 2008), Cape Town, South Africa, pp. 15–25 (2008) De la Porte, J., Herbst, B.M., Hereman, W., Van Der Walt, S.J.: An introduction to diffusion maps. In: Proceedings of the 19th Symposium of the Pattern Recognition Association of South Africa (PRASA 2008), Cape Town, South Africa, pp. 15–25 (2008)
29.
Zurück zum Zitat Zheng, T., Salganik, M.J., Gelman, A.: How many people do you know in prison? Using overdispersion in count data to estimate social structure in networks. J. Am. Stat. Assoc. 101(474), 409–423 (2006)MathSciNetCrossRefMATH Zheng, T., Salganik, M.J., Gelman, A.: How many people do you know in prison? Using overdispersion in count data to estimate social structure in networks. J. Am. Stat. Assoc. 101(474), 409–423 (2006)MathSciNetCrossRefMATH
30.
Zurück zum Zitat Yan, K., Zhang, D.: Feature selection and analysis on correlated gas sensor data with recursive feature elimination. Sens. Actuat. B: Chem. 212, 353–363 (2015)CrossRef Yan, K., Zhang, D.: Feature selection and analysis on correlated gas sensor data with recursive feature elimination. Sens. Actuat. B: Chem. 212, 353–363 (2015)CrossRef
32.
Zurück zum Zitat Xu, L., Skoularidou, M., Cuesta-Infante, A., Veeramachaneni, K.: Modeling tabular data using conditional gan. In: Advances in Neural Information Processing Systems, pp. 7335–7345 (2019) Xu, L., Skoularidou, M., Cuesta-Infante, A., Veeramachaneni, K.: Modeling tabular data using conditional gan. In: Advances in Neural Information Processing Systems, pp. 7335–7345 (2019)
Metadaten
Titel
Detecting Word Based DGA Domains Using Ensemble Models
verfasst von
P. V. Sai Charan
Sandeep K. Shukla
P. Mohan Anand
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-65411-5_7