Skip to main content

16.02.2025 | Original Paper

Detection and segmentation of overhead transmission line icing images via an improved YOLOv8-seg

verfasst von: Jiange Jiao, Fanglin Liu, Zhenguo Wang, Guoping Zou, Yongkang Peng

Erschienen in: Electrical Engineering

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Overhead transmission lines ice-covered endanger the stable operation of power systems seriously. Different types of icing have different hazards to the power grid. To ensure accurate detection and segmentation of different types of line icing, an improved YOLOv8-seg algorithm is used for icing detection and segmentation of overhead transmission lines. The algorithm introduces deformable convolution v2 (DCNv2) to the Cf2 module at the bottom of the backbone network to enhance the network’s ability to learn texture and edge features in images. To further improve the detection and segmentation accuracy of the model, the algorithm is improved by introducing the triplet attention mechanism into the network, improving the upsampling method of the network, and applying the slide weight function to the loss calculation. The experimental results demonstrate that the improved YOLOv8-seg algorithm achieves accuracies of 95.28% and 95.04%, with accuracies of Box_mAP@0.5 and Mask_mAP@0.5, respectively and the maximum and minimum difference in detection and segmentation accuracy for different types of icing should not exceed 3%. These results verified the effectiveness of the improved algorithm and underscored its performance advantages. The detection results can provide a reference for power grid icing disaster prevention and control and icing degree assessment.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
13.
Zurück zum Zitat Hao Y, Zhang W, Liang W et al (2022) Mask R-CNN image recognition and segmentation of icing conductors in transmission lines. Guangdong Electric Power 35(02):1–10MATH Hao Y, Zhang W, Liang W et al (2022) Mask R-CNN image recognition and segmentation of icing conductors in transmission lines. Guangdong Electric Power 35(02):1–10MATH
14.
Zurück zum Zitat Zhou Q, Li J, Wan L et al (2016) Research on image classification of multi feature based on D-S evidence theory for transmission line icing image. Chin J Sci Instr 37(S1):102–107MATH Zhou Q, Li J, Wan L et al (2016) Research on image classification of multi feature based on D-S evidence theory for transmission line icing image. Chin J Sci Instr 37(S1):102–107MATH
15.
Zurück zum Zitat Hao Y, Wang X, Wei LIANG et al (2023) Ice types identification and prediction of overhead transmission lines driven by micro-meteorological data of three consecutive days icing. South Power Syst Technol 17(06):107–116MATH Hao Y, Wang X, Wei LIANG et al (2023) Ice types identification and prediction of overhead transmission lines driven by micro-meteorological data of three consecutive days icing. South Power Syst Technol 17(06):107–116MATH
16.
Zurück zum Zitat Hao Y, Liang W, Yang L et al (2022) Methods of image recognition of overhead power line insulators and ice types based on deep weakly-supervised and transfer learning. IET Generation, Trans Distr 16(11):2140–2153CrossRefMATH Hao Y, Liang W, Yang L et al (2022) Methods of image recognition of overhead power line insulators and ice types based on deep weakly-supervised and transfer learning. IET Generation, Trans Distr 16(11):2140–2153CrossRefMATH
17.
Zurück zum Zitat Zhu X, Hu H, Lin S, et al (2019) Deformable ConvNets V2: More Deformable, Better Results. IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp:9308–9316. Zhu X, Hu H, Lin S, et al (2019) Deformable ConvNets V2: More Deformable, Better Results. IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp:9308–9316.
20.
Zurück zum Zitat Shrivastava A, Gupta A, Girshick R (2016) Training region-based object detectors with online hard example mining. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp:761–769. Shrivastava A, Gupta A, Girshick R (2016) Training region-based object detectors with online hard example mining. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp:761–769.
21.
Zurück zum Zitat Bolya D, Zhou C, Xiao F, et al (2019) YOLACT: Real-time instance segmentation. Proceedings of the IEEE/CVF International Conference on Computer Vision, pp:9157–9166. Bolya D, Zhou C, Xiao F, et al (2019) YOLACT: Real-time instance segmentation. Proceedings of the IEEE/CVF International Conference on Computer Vision, pp:9157–9166.
23.
Zurück zum Zitat Hu J, Shen L, Sun G (2018) Squeeze-and-excitation networks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp:7132–7141. Hu J, Shen L, Sun G (2018) Squeeze-and-excitation networks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp:7132–7141.
24.
Zurück zum Zitat Wang Q L, Wu B, Zhu P, et al (2020) ECA-net: Efficient channel attention for deep convolutional neural net‐works. IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp:11534–11542. Wang Q L, Wu B, Zhu P, et al (2020) ECA-net: Efficient channel attention for deep convolutional neural net‐works. IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp:11534–11542.
25.
Zurück zum Zitat Yang L, Zhang R, Li L, et al (2021) SimAM: A simple, parameter-free attention module for convolutional neural networks. International Conference on Machine Learning, pp:11863–11874. Yang L, Zhang R, Li L, et al (2021) SimAM: A simple, parameter-free attention module for convolutional neural networks. International Conference on Machine Learning, pp:11863–11874.
28.
Zurück zum Zitat Wang C, Yeh I, Mark Liao H (2025). Yolov9: Learning what you want to learn using programmable gradient information. European Conference on Computer Vision, pp:1–21. Wang C, Yeh I, Mark Liao H (2025). Yolov9: Learning what you want to learn using programmable gradient information. European Conference on Computer Vision, pp:1–21.
Metadaten
Titel
Detection and segmentation of overhead transmission line icing images via an improved YOLOv8-seg
verfasst von
Jiange Jiao
Fanglin Liu
Zhenguo Wang
Guoping Zou
Yongkang Peng
Publikationsdatum
16.02.2025
Verlag
Springer Berlin Heidelberg
Erschienen in
Electrical Engineering
Print ISSN: 0948-7921
Elektronische ISSN: 1432-0487
DOI
https://doi.org/10.1007/s00202-025-02992-1