Skip to main content

2024 | OriginalPaper | Buchkapitel

Detection of Aircraft in Satellite Images using Multilayer Convolution Neural Network

verfasst von : Swaraj Agarwal, Narayan Panigarhi, M. A. Rajesh

Erschienen in: Internet of Things. Advances in Information and Communication Technology

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The automatic identification of various spatial entities within satellite imagery is a crucial undertaking for interpreting such images. Numerous research papers have explored the segregation, identification, and geolocation of objects of interest, such as airplanes, vehicles, and human elements, within satellite images. The detection of aircraft from satellite imagery is particularly significant for gathering operational intelligence. Detecting aircraft within the environment is achieved through active remote sensing methods, such as RADAR and LASER. Various algorithms have been devised and developed specifically for aircraft detection in satellite imagery. The advent of AI-based techniques has brought about a transformative shift in object detection within remotely sensed images. This paper proposes a methodology employing a convolutional neural network (CNN) for the detection of aircraft within satellite imagery. Initially, an image dataset is generated using QGIS software, which is then partitioned into training and testing datasets. A multi-layered CNN model is employed to train and evaluate the dataset. Subsequently, the trained CNN is applied to remotely sensed images to detect the presence of aircraft within the scene. The aircraft detection accuracy from randomly selected satellite images is reported to be 95%.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
4.
Zurück zum Zitat Ucar, F., Dandil, B., Ata, F.: Aircraft detection system based on regions with convolutional neural networks. Int. J. Intell. Syst. Appl. Eng. 8(3), 147–153 (2020)CrossRef Ucar, F., Dandil, B., Ata, F.: Aircraft detection system based on regions with convolutional neural networks. Int. J. Intell. Syst. Appl. Eng. 8(3), 147–153 (2020)CrossRef
7.
Zurück zum Zitat Deng, Z., Sun, H., Zhou, S., Zhao, J., Lei, L., Zou, H.: Multi-scale object detection in remote sensing imagery with convolutional neural networks. ISPRS J. Photogrammetry and Remote Sensing 145(Part A), 3–22 (2018). ISSN 0924–2716 Deng, Z., Sun, H., Zhou, S., Zhao, J., Lei, L., Zou, H.: Multi-scale object detection in remote sensing imagery with convolutional neural networks. ISPRS J. Photogrammetry and Remote Sensing 145(Part A), 3–22 (2018). ISSN 0924–2716
9.
Zurück zum Zitat Fu, K., Chang, Z., Zhang, Y., Xu, G., Zhang, K., Sun, X.: Rotation-aware and multi- scale convolutional neural network for object detection in remote sensing images. ISPRS J. Photogrammetry and Remote Sensing 161, 294–308 (2020). ISSN 0924–2716 Fu, K., Chang, Z., Zhang, Y., Xu, G., Zhang, K., Sun, X.: Rotation-aware and multi- scale convolutional neural network for object detection in remote sensing images. ISPRS J. Photogrammetry and Remote Sensing 161, 294–308 (2020). ISSN 0924–2716
10.
Zurück zum Zitat Guo, W., Yang, W., Zhang, H., Hua, G.: Geospatial object detection in high resolution satellite images based on multi-scale convolutional neural network. Remote Sens. 10, 131 (2018)CrossRef Guo, W., Yang, W., Zhang, H., Hua, G.: Geospatial object detection in high resolution satellite images based on multi-scale convolutional neural network. Remote Sens. 10, 131 (2018)CrossRef
11.
Zurück zum Zitat Alshaibani, W.T., Helvaci, M., Shayea, I., Mohamad, H.: Airplane Detection Based on Mask Region Convolution Neural Network. arXiv preprint arXiv:2108.12817 (2021) Alshaibani, W.T., Helvaci, M., Shayea, I., Mohamad, H.: Airplane Detection Based on Mask Region Convolution Neural Network. arXiv preprint arXiv:​2108.​12817 (2021)
13.
Zurück zum Zitat Panigrahi, N.: Geographic Information Science, 4th ed. Universities Press (India) Private Limited, Hyderabad (2008). ISBN (13) 978-1-4398-1004 Panigrahi, N.: Geographic Information Science, 4th ed. Universities Press (India) Private Limited, Hyderabad (2008). ISBN (13) 978-1-4398-1004
Metadaten
Titel
Detection of Aircraft in Satellite Images using Multilayer Convolution Neural Network
verfasst von
Swaraj Agarwal
Narayan Panigarhi
M. A. Rajesh
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-45882-8_29