Skip to main content
Erschienen in:

01.06.2024

Detection of Atrial Fibrillation from ECG Signal Using Efficient Feature Selection and Classification

verfasst von: Thivya Anbalagan, Malaya Kumar Nath, Archana Anbalagan

Erschienen in: Circuits, Systems, and Signal Processing | Ausgabe 9/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Atrial fibrillation (AF) is a life-threatening cardiac condition caused by inadequate blood flow, resulting in abnormal ECG records, blood clotting, and cardioembolic strokes. In recent years, physicians have been particularly concerned with early detection and diagnosis to overcome cardiogenic stroke. AF can be easily identified at the initial stages due to the development in computer-aided diagnosis. The performance of this method is affected by noise and the variations in pattern of the ECG, which leads to false diagnosis. Current signal processing and shallow machine learning (ML) approaches are severely limited in their ability to detect this condition accurately. Deep neural networks have been shown to be extremely effective at learning nonlinear patterns in a wide variety of problems, which include computer vision tasks. Deep learning models are computationally costly, non-explainable, and require a large quantity of data to discover characteristics. In contrast, ML approaches are explainable and require good feature extraction. In this manuscript, ML based supervised classification method is developed based on feature ensembling. ECG signals are preprocessed (mean subtraction followed by Butterworth filtering and computation of RR intervals) and subjected to feature extraction (by entropy-, wavelets-, & statistical-features). The variations due to AF are effectively captured and selective features are ensembled to perform classification by SVM and KNN. This method is experimented on five different databases (such as: PAF prediction Challenge, Long-Term AF, Intracardiac, AF termination Challenge, and MIT-BIH atrial fibrillation) and the classification performance is found to be the highest compared to the state of art. To evaluate the effectiveness of the proposed technique, AF-specific characteristics are retrieved from the ECG signal in the presence of artificially added noise and the features are fed to classifiers for classification. Performance of the proposed method is compared with the deep learning based approaches. The graphical abstract of the proposed atrial fibrillation detection method is presented. The overall accuracy of the proposed method was found to be 91.88\(\%\) and 91.99\(\%\) for wavelets-SVM and ensemble wavelet-SVM, respectively. This model attained 100\(\%\) accuracy for entropy and statistical features with SVM and KNN, respectively.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

ATZelektronik

Die Fachzeitschrift ATZelektronik bietet für Entwickler und Entscheider in der Automobil- und Zulieferindustrie qualitativ hochwertige und fundierte Informationen aus dem gesamten Spektrum der Pkw- und Nutzfahrzeug-Elektronik. 

Lassen Sie sich jetzt unverbindlich 2 kostenlose Ausgabe zusenden.

ATZelectronics worldwide

ATZlectronics worldwide is up-to-speed on new trends and developments in automotive electronics on a scientific level with a high depth of information. 

Order your 30-days-trial for free and without any commitment.

Weitere Produktempfehlungen anzeigen
Literatur
8.
Zurück zum Zitat J. Chen, Y. Zheng, Y. Liang, Z. Zhan, M. Jiang, X. Zhang, DSd. Silva, W. Wu, V.H.C.d. Albuquerque, Edge2analysis: A novel AIoT platform for atrial fibrillation recognition and detection. IEEE J. Biomed. Health Inform. 26(12), 5772–5782 (2022). https://doi.org/10.1109/JBHI.2022.3171918 J. Chen, Y. Zheng, Y. Liang, Z. Zhan, M. Jiang, X. Zhang, DSd. Silva, W. Wu, V.H.C.d. Albuquerque, Edge2analysis: A novel AIoT platform for atrial fibrillation recognition and detection. IEEE J. Biomed. Health Inform. 26(12), 5772–5782 (2022). https://​doi.​org/​10.​1109/​JBHI.​2022.​3171918
9.
Zurück zum Zitat R. Czabanski, K. Horoba, J. Wrobel, A. Matonia, R. Martinek, T. Kupka, M. Jezewski, R. Kahankova, J. Jezewski, J.M. Leski, Detection of atrial fibrillation episodes in long-term heart rhythm signals using a support vector machine. Sensors 20, 65–74 (2020). https://doi.org/10.3390/s20030765CrossRef R. Czabanski, K. Horoba, J. Wrobel, A. Matonia, R. Martinek, T. Kupka, M. Jezewski, R. Kahankova, J. Jezewski, J.M. Leski, Detection of atrial fibrillation episodes in long-term heart rhythm signals using a support vector machine. Sensors 20, 65–74 (2020). https://​doi.​org/​10.​3390/​s20030765CrossRef
11.
Zurück zum Zitat L.M. Eerikainen, A.G. Bonomi, F. Schipper, L.R.C. Dekker, H.M.d. Morree, R. Vullings, R.M. Aarts, Detecting atrial fibrillation and atrial flutter in daily life using photoplethysmography data. IEEE J. Biomed. Health Inform. 24, 1610–1618 (2020). https://doi.org/10.1109/JBHI.2019.2950574 L.M. Eerikainen, A.G. Bonomi, F. Schipper, L.R.C. Dekker, H.M.d. Morree, R. Vullings, R.M. Aarts, Detecting atrial fibrillation and atrial flutter in daily life using photoplethysmography data. IEEE J. Biomed. Health Inform. 24, 1610–1618 (2020). https://​doi.​org/​10.​1109/​JBHI.​2019.​2950574
15.
Zurück zum Zitat A.L. Goldberger, L.A.N. Amaral, L. Glass, J.M. Hausdorff, P.C. Ivanov, R.G. Mark, J.E. Mietus, G.B. Moody, C.K. Peng, H.E. Stanley, PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation 101(23), 215–220 (2000). https://doi.org/10.1161/01.cir.101.23.e215 A.L. Goldberger, L.A.N. Amaral, L. Glass, J.M. Hausdorff, P.C. Ivanov, R.G. Mark, J.E. Mietus, G.B. Moody, C.K. Peng, H.E. Stanley, PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation 101(23), 215–220 (2000). https://​doi.​org/​10.​1161/​01.​cir.​101.​23.​e215
21.
Zurück zum Zitat B.P. Krijthe, A. Kunst, E.J. Benjamin, G.Y.H. Lip, O.H. Franco, A. Hofman, J.C.M. Witteman, H.S.S. Bruno, J. Heeringa, Projections on the number of individuals with atrial fibrillation in the European Union, from 2000 to 2060. Eur. Heart. J. (2013). https://doi.org/10.1093/eurheartj/eht280 B.P. Krijthe, A. Kunst, E.J. Benjamin, G.Y.H. Lip, O.H. Franco, A. Hofman, J.C.M. Witteman, H.S.S. Bruno, J. Heeringa, Projections on the number of individuals with atrial fibrillation in the European Union, from 2000 to 2060. Eur. Heart. J. (2013). https://​doi.​org/​10.​1093/​eurheartj/​eht280
24.
Zurück zum Zitat G. Luongo, S. Schuler, A. Luik, T. Almeida, D. Soriano, O. Doessel, A. Loewe, Non-invasive characterization of atrial flutter mechanisms using recurrence quantification analysis on the ECG: A computational study. IEEE Trans. Biomed. Eng. 68(3), 914–925 (2021). https://doi.org/10.1109/TBME.2020.2990655 G. Luongo, S. Schuler, A. Luik, T. Almeida, D. Soriano, O. Doessel, A. Loewe, Non-invasive characterization of atrial flutter mechanisms using recurrence quantification analysis on the ECG: A computational study. IEEE Trans. Biomed. Eng. 68(3), 914–925 (2021). https://​doi.​org/​10.​1109/​TBME.​2020.​2990655
30.
Zurück zum Zitat S. Nurmaini, A.E. Tondas, A. Darmawahyuni, M.N. Rachmatullah, R. Umi-Partan, F. Firdaus, B. Tutuko, F. Pratiwi, A.H. Juliano, R. Khoirani, Robust detection of atrial fibrillation from short-term electrocardiogram using convolutional neural networks. Future Gener. Comput. Syst. 113, 304–317 (2020). https://doi.org/10.1016/j.future.2020.07.021CrossRef S. Nurmaini, A.E. Tondas, A. Darmawahyuni, M.N. Rachmatullah, R. Umi-Partan, F. Firdaus, B. Tutuko, F. Pratiwi, A.H. Juliano, R. Khoirani, Robust detection of atrial fibrillation from short-term electrocardiogram using convolutional neural networks. Future Gener. Comput. Syst. 113, 304–317 (2020). https://​doi.​org/​10.​1016/​j.​future.​2020.​07.​021CrossRef
36.
Zurück zum Zitat L.H. Wang, Z.H. Yan, Y.T. Yang, J.Y. Chen, T. Yang, I.C. Kuo, P.A. Abu, P.C. Huang, C.A. Chen, S.L. Chen, A classification and prediction hybrid model construction with the IQPSO-SVM algorithm for atrial fibrillation arrhythmia. Sensors 21, (5222) 1–20 (2021). https://doi.org/10.3390/s21155222 L.H. Wang, Z.H. Yan, Y.T. Yang, J.Y. Chen, T. Yang, I.C. Kuo, P.A. Abu, P.C. Huang, C.A. Chen, S.L. Chen, A classification and prediction hybrid model construction with the IQPSO-SVM algorithm for atrial fibrillation arrhythmia. Sensors 21, (5222) 1–20 (2021). https://​doi.​org/​10.​3390/​s21155222
Metadaten
Titel
Detection of Atrial Fibrillation from ECG Signal Using Efficient Feature Selection and Classification
verfasst von
Thivya Anbalagan
Malaya Kumar Nath
Archana Anbalagan
Publikationsdatum
01.06.2024
Verlag
Springer US
Erschienen in
Circuits, Systems, and Signal Processing / Ausgabe 9/2024
Print ISSN: 0278-081X
Elektronische ISSN: 1531-5878
DOI
https://doi.org/10.1007/s00034-024-02727-w