Skip to main content

2014 | OriginalPaper | Buchkapitel

10. Detection of Bioaerosols Using Raman Spectroscopy

verfasst von : Hilsamar Félix-Rivera, Samuel P. Hernández-Rivera

Erschienen in: Bioaerosol Detection Technologies

Verlag: Springer New York

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter contains a brief historical perspective and basic principles of the Raman Effect, focusing on its evolution from an esoteric technique to an everyday lab tool used for sample analysis. As a vibrational spectroscopic technique, Raman is complementary to infrared spectroscopy (IRS) and some fundamental differences, as well as similarities between them are discussed. Raman spectroscopy has been established as an excellent tool for both materials characterization and biophysical studies. The type of information obtained from this technique, several applications in detection, identification and characterization of several types of samples are also discussed. Within the main principal applications of Raman spectroscopy and its variations, including Normal Raman, resonance Raman and UV-Raman spectroscopies, coherent anti-stokes Raman scattering and surface enhanced Raman scattering, this chapter focuses on detection of biological aerosols. This topic was reviewed in depth and details are included. Optimization parameters to achieve fast, nondestructive and sensitive analysis on biodetection and to analyze the data are also included briefly to allow the fundamental studies for applications in research areas such as environmental pollution monitoring, biomedicine and in areas of defense and security.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Smekal A (1923) Zur quantentheorie der dispersion. Naturwissenschaften 43:873–875CrossRef Smekal A (1923) Zur quantentheorie der dispersion. Naturwissenschaften 43:873–875CrossRef
2.
Zurück zum Zitat Raman CV, Krishnan KS (1928) A new type of secondary radiation. Nature 121:501–502CrossRef Raman CV, Krishnan KS (1928) A new type of secondary radiation. Nature 121:501–502CrossRef
3.
4.
Zurück zum Zitat McCreery RL (2000) Raman Spectroscopy for Chemical Analysis. John Wiley & Sons, Inc., New York, NYCrossRef McCreery RL (2000) Raman Spectroscopy for Chemical Analysis. John Wiley & Sons, Inc., New York, NYCrossRef
5.
Zurück zum Zitat Long DA (1977) Raman Spectroscopy. Mc-Graw-Hill, New York, NY Long DA (1977) Raman Spectroscopy. Mc-Graw-Hill, New York, NY
6.
Zurück zum Zitat Pelletier MJ (ed) (1999) Analytical Applications of Raman Spectroscopy. Blackwell Science Ltd., London, UK Pelletier MJ (ed) (1999) Analytical Applications of Raman Spectroscopy. Blackwell Science Ltd., London, UK
7.
Zurück zum Zitat Smith E, Dent G (2005) Modern Raman Spectroscopy—A Practical Approach. J. Wiley & Sons, Ltd., Hoboken, NJ Smith E, Dent G (2005) Modern Raman Spectroscopy—A Practical Approach. J. Wiley & Sons, Ltd., Hoboken, NJ
8.
Zurück zum Zitat Yan F, Vo-Dinh T (2007) Surface-enhanced Raman scattering detection of chemical and biological agents using a portable Raman integrated tunable sensor. Sensors Actuat B-Chem 121 (1):61–66. doi:10.1016/j.snb.2006.09.032CrossRef Yan F, Vo-Dinh T (2007) Surface-enhanced Raman scattering detection of chemical and biological agents using a portable Raman integrated tunable sensor. Sensors Actuat B-Chem 121 (1):61–66. doi:10.1016/j.snb.2006.09.032CrossRef
9.
Zurück zum Zitat Kiefer W (2007) Recent Advances in linear and nonlinear Raman spectroscopy I. J Raman Spectrosc 38 (12):1538–1553. doi:10.1002/jrs.1902 Kiefer W (2007) Recent Advances in linear and nonlinear Raman spectroscopy I. J Raman Spectrosc 38 (12):1538–1553. doi:10.1002/jrs.1902
10.
Zurück zum Zitat Kiefer W (2008) Recent advances in linear and nonlinear Raman spectroscopy II. J Raman Spectrosc 39 (12):1710–1725. doi:10.1002/jrs.2171CrossRef Kiefer W (2008) Recent advances in linear and nonlinear Raman spectroscopy II. J Raman Spectrosc 39 (12):1710–1725. doi:10.1002/jrs.2171CrossRef
11.
Zurück zum Zitat Pacheco-Londoño LC, Ortiz-Rivera W, Primera-Pedrozo OM, Hernandez-Rivera SP (2009) Vibrational spectroscopy standoff detection of explosives. Anal Bioanal Chem 395 (2):323–335. doi:10.1007/s00216-009-2954-yCrossRef Pacheco-Londoño LC, Ortiz-Rivera W, Primera-Pedrozo OM, Hernandez-Rivera SP (2009) Vibrational spectroscopy standoff detection of explosives. Anal Bioanal Chem 395 (2):323–335. doi:10.1007/s00216-009-2954-yCrossRef
12.
Zurück zum Zitat Wallin S, Pettersson A, Ostmark H, Hobro A (2009) Laser-based standoff detection of explosives: a critical review. Anal Bioanal Chem 395 (2):259–274. doi:10.1007/s00216-009-2844-3CrossRef Wallin S, Pettersson A, Ostmark H, Hobro A (2009) Laser-based standoff detection of explosives: a critical review. Anal Bioanal Chem 395 (2):259–274. doi:10.1007/s00216-009-2844-3CrossRef
13.
Zurück zum Zitat Sharma S, Misra A (2008) Remote Raman Spectroscopic Detection of Inorganic, Organic and Biological Materials to 100 m and More. Proc ICOPVS, 1: 3–7 Sharma S, Misra A (2008) Remote Raman Spectroscopic Detection of Inorganic, Organic and Biological Materials to 100 m and More. Proc ICOPVS, 1: 3–7
14.
Zurück zum Zitat Moosmuller H, Chakrabarty RK, Arnott WP (2009) Aerosol light absorption and its measurement: A review. J Quant Spectrosc Ra 110:844–878. doi:10.1016/j.jqsrt.2009.02.035CrossRef Moosmuller H, Chakrabarty RK, Arnott WP (2009) Aerosol light absorption and its measurement: A review. J Quant Spectrosc Ra 110:844–878. doi:10.1016/j.jqsrt.2009.02.035CrossRef
15.
Zurück zum Zitat Chase DB (1986) Fourier Raman transform spectroscopy. J Am Chem Soc 108:7485CrossRef Chase DB (1986) Fourier Raman transform spectroscopy. J Am Chem Soc 108:7485CrossRef
16.
Zurück zum Zitat Chase DB, Rabolt J-F (1994) Fourier Transform Raman Spectroscopy: From Concept to Experiment. Academic Press, New York, NY Chase DB, Rabolt J-F (1994) Fourier Transform Raman Spectroscopy: From Concept to Experiment. Academic Press, New York, NY
17.
Zurück zum Zitat Félix-Rivera H, Hernández-Rivera S (2012) Raman Spectroscopy Techniques for the Detection of Biological Samples in Suspensions and as Aerosol Particles: A Review. Sens Imaging 13 (1):1–25. doi:10.1007/s11220-011-0067-0CrossRef Félix-Rivera H, Hernández-Rivera S (2012) Raman Spectroscopy Techniques for the Detection of Biological Samples in Suspensions and as Aerosol Particles: A Review. Sens Imaging 13 (1):1–25. doi:10.1007/s11220-011-0067-0CrossRef
18.
Zurück zum Zitat Esposito AP, Talley CE, Huser T, Hollars CW, Schaldach CM, Lane SM (2003) Analysis of single bacterial spores by micro-Raman spectroscopy. Appl Spectrosc 57 (7):868–871CrossRef Esposito AP, Talley CE, Huser T, Hollars CW, Schaldach CM, Lane SM (2003) Analysis of single bacterial spores by micro-Raman spectroscopy. Appl Spectrosc 57 (7):868–871CrossRef
19.
Zurück zum Zitat Tripathi A, Jabbour RE, Guicheteau JA, Christesen SD, Emge DK, Fountain AW, Bottiger JR, Emmons ED, Snyder AP (2009) Bioaerosol Analysis with Raman Chemical Imaging Microspectroscopy. Anal Chem 81 (16):6981–6990. doi:10.1021/ac901074cCrossRef Tripathi A, Jabbour RE, Guicheteau JA, Christesen SD, Emge DK, Fountain AW, Bottiger JR, Emmons ED, Snyder AP (2009) Bioaerosol Analysis with Raman Chemical Imaging Microspectroscopy. Anal Chem 81 (16):6981–6990. doi:10.1021/ac901074cCrossRef
20.
Zurück zum Zitat Rŏsch P, Harz M, Peschke K-D, Ronneberger O, Burkhardt H, Schüle A, Schmauz G, Lankers M, Hofer S, Thiele H, Motzkus H-W, Popp J (2006) On-Line Monitoring and Identification of Bioaerosols. Anal Chem, vol 78. Rŏsch P, Harz M, Peschke K-D, Ronneberger O, Burkhardt H, Schüle A, Schmauz G, Lankers M, Hofer S, Thiele H, Motzkus H-W, Popp J (2006) On-Line Monitoring and Identification of Bioaerosols. Anal Chem, vol 78.
21.
Zurück zum Zitat Carmona P (1980) Vibrational-spectra and structure of crystalline dipicolinic acid and calcium dipicolinate trihydrate. Spectrochim Acta A 36 (7):705–712CrossRef Carmona P (1980) Vibrational-spectra and structure of crystalline dipicolinic acid and calcium dipicolinate trihydrate. Spectrochim Acta A 36 (7):705–712CrossRef
22.
Zurück zum Zitat Kolomenskii AA, Jerebtsov SN, Opatrny T, Schuessler HA, Scully MO (2003) Spontaneous Raman spectra of dipicolinic acid in microcrystalline form. J Mod Optic 50 (15–17):2369–2374. doi:10.1080/0950034032000120803CrossRef Kolomenskii AA, Jerebtsov SN, Opatrny T, Schuessler HA, Scully MO (2003) Spontaneous Raman spectra of dipicolinic acid in microcrystalline form. J Mod Optic 50 (15–17):2369–2374. doi:10.1080/0950034032000120803CrossRef
23.
Zurück zum Zitat Chan J, Fore S, Wachsman-Hogiu S, Huser T (2008) Raman spectroscopy and microscopy of individual cells and cellular components. Laser Photonics Rev 2 (5):325–349. doi:10.1002/lpor.200810012CrossRef Chan J, Fore S, Wachsman-Hogiu S, Huser T (2008) Raman spectroscopy and microscopy of individual cells and cellular components. Laser Photonics Rev 2 (5):325–349. doi:10.1002/lpor.200810012CrossRef
24.
Zurück zum Zitat Premasiri WR, Moir DT, Klempner MS, Krieger N, Jones G, Ziegler LD (2005) Characterization of the Surface Enhanced Raman Scattering (SERS) of bacteria. J Phys Chem B 109 (1):312–320. doi:10.1021/jp040442nCrossRef Premasiri WR, Moir DT, Klempner MS, Krieger N, Jones G, Ziegler LD (2005) Characterization of the Surface Enhanced Raman Scattering (SERS) of bacteria. J Phys Chem B 109 (1):312–320. doi:10.1021/jp040442nCrossRef
25.
Zurück zum Zitat Luna-Pineda T, Soto-Feliciano K, De La Cruz-Montoya E, Londono LCP, Rios-Velazquez C, Hernandez-Rivera SP (2007) Spectroscopic characterization of biological agents using FTIR, Normal Raman and surface enhanced Raman scattering. Proc SPIE 6554, 1–11. doi: 10.1117/12.720338 Luna-Pineda T, Soto-Feliciano K, De La Cruz-Montoya E, Londono LCP, Rios-Velazquez C, Hernandez-Rivera SP (2007) Spectroscopic characterization of biological agents using FTIR, Normal Raman and surface enhanced Raman scattering. Proc SPIE 6554, 1–11. doi: 10.1117/12.720338
27.
Zurück zum Zitat Hug WF, Bhartia R, Taspin A, Lane A, Conrad P, Sijapati K, Reid RD (2005) Status of miniature integrated UV resonance fluorescence and Raman sensors for detection and identification of biochemical warfare agents. Proc SPIE 59940J. doi:10.1117/12.628923 Hug WF, Bhartia R, Taspin A, Lane A, Conrad P, Sijapati K, Reid RD (2005) Status of miniature integrated UV resonance fluorescence and Raman sensors for detection and identification of biochemical warfare agents. Proc SPIE 59940J. doi:10.1117/12.628923
28.
Zurück zum Zitat Hug WF, Reid RD, Bhartia R, Lane AL (2008) A new miniature hand-held solar-blind reagentless standoff chemical, biological, and explosives (CBE) sensor. Proc SPIE 69540I–69540I Hug WF, Reid RD, Bhartia R, Lane AL (2008) A new miniature hand-held solar-blind reagentless standoff chemical, biological, and explosives (CBE) sensor. Proc SPIE 69540I–69540I
29.
Zurück zum Zitat Hug WF, Reid RD, Bhartia R, Lane AL (2009) Performance status of a small robot-mounted or hand-held, solar-blind, standoff chemical, biological, and explosives (CBE) sensor. Proc SPIE 73040Z–73040Z Hug WF, Reid RD, Bhartia R, Lane AL (2009) Performance status of a small robot-mounted or hand-held, solar-blind, standoff chemical, biological, and explosives (CBE) sensor. Proc SPIE 73040Z–73040Z
30.
Zurück zum Zitat Hug WF, Bhartia R, Tsapin A, Lane A, Conrad P, Sijapati K, Reid RD (2006) Water and surface contamination monitoring using deep UV laser induced native fluorescence and Raman spectroscopy. Proc SPIE 63780S–63780S Hug WF, Bhartia R, Tsapin A, Lane A, Conrad P, Sijapati K, Reid RD (2006) Water and surface contamination monitoring using deep UV laser induced native fluorescence and Raman spectroscopy. Proc SPIE 63780S–63780S
31.
Zurück zum Zitat Chadha S, Nelson WH, Sperry JF (1993) Ultraviolet Micro-Raman spectrograph for the detection of small numbers of bacterial-cells. Rev Sci Instrum 64 (11):3088–3093CrossRef Chadha S, Nelson WH, Sperry JF (1993) Ultraviolet Micro-Raman spectrograph for the detection of small numbers of bacterial-cells. Rev Sci Instrum 64 (11):3088–3093CrossRef
32.
Zurück zum Zitat Fung KH, Tang IN (1992) Analysis of Aerosol-Particles by Resonance Raman-Scattering Technique. Appl Spectrosc 46 (1):159–162CrossRef Fung KH, Tang IN (1992) Analysis of Aerosol-Particles by Resonance Raman-Scattering Technique. Appl Spectrosc 46 (1):159–162CrossRef
33.
Zurück zum Zitat Fung KH, Tang IN (1992) Aerosol-particle analysis by Resonance Raman-Spectroscopy. J Aerosol Sci 23 (3):301–307CrossRef Fung KH, Tang IN (1992) Aerosol-particle analysis by Resonance Raman-Spectroscopy. J Aerosol Sci 23 (3):301–307CrossRef
34.
Zurück zum Zitat Wu Q, Nelson WH, Elliot S, Sperry JF, Feld M, Dasari R, Manoharan R (2000) Intensities of E. coli Nucleic Acid Raman Spectra Excited Selectively from Whole Cells with 251-nm Light. Anal Chem 72 (13):2981–2986. doi:10.1021/ac990932pCrossRef Wu Q, Nelson WH, Elliot S, Sperry JF, Feld M, Dasari R, Manoharan R (2000) Intensities of E. coli Nucleic Acid Raman Spectra Excited Selectively from Whole Cells with 251-nm Light. Anal Chem 72 (13):2981–2986. doi:10.1021/ac990932pCrossRef
35.
Zurück zum Zitat Manoharan R, Ghiamati E, Chadha S, Nelson WH, Sperry JF (1993) Effect of cultural conditions on deep UV Resonance Raman-spectra of bacteria. Appl Spectrosc 47 (12):2145–2150CrossRef Manoharan R, Ghiamati E, Chadha S, Nelson WH, Sperry JF (1993) Effect of cultural conditions on deep UV Resonance Raman-spectra of bacteria. Appl Spectrosc 47 (12):2145–2150CrossRef
36.
Zurück zum Zitat Ghiamati E, Manoharan R, Nelson WH, Sperry JF (1992) UV Resonance Raman-Spectra of Bacillus Spores. Appl Spectrosc 46 (2):357–364CrossRef Ghiamati E, Manoharan R, Nelson WH, Sperry JF (1992) UV Resonance Raman-Spectra of Bacillus Spores. Appl Spectrosc 46 (2):357–364CrossRef
37.
Zurück zum Zitat Wu Q, Hamilton T, Nelson WH, Elliott S, Sperry JF, Wu M (2001) UV Raman Spectral Intensities of E. Coli and Other Bacteria Excited at 228. 9, 244.0, and 248.2 nm. Anal Chem 73 (14):3432–3440. doi:10.1021/ac001268bCrossRef Wu Q, Hamilton T, Nelson WH, Elliott S, Sperry JF, Wu M (2001) UV Raman Spectral Intensities of E. Coli and Other Bacteria Excited at 228. 9, 244.0, and 248.2 nm. Anal Chem 73 (14):3432–3440. doi:10.1021/ac001268bCrossRef
38.
Zurück zum Zitat Ooi CHR, Beadie G, Kattawar GW, Reintjes JF, Rostovtsev Y, Zubairy MS, Scully MO (2005) Theory of femtosecond coherent anti-Stokes Raman backscattering enhanced by quantum coherence for standoff detection of bacterial spores. Phys Rev A 72 (2). doi:02380710.1103/PhysRevA.72.023807 Ooi CHR, Beadie G, Kattawar GW, Reintjes JF, Rostovtsev Y, Zubairy MS, Scully MO (2005) Theory of femtosecond coherent anti-Stokes Raman backscattering enhanced by quantum coherence for standoff detection of bacterial spores. Phys Rev A 72 (2). doi:02380710.1103/PhysRevA.72.023807
39.
Zurück zum Zitat Scully MO, Kattawar GW, Lucht RP, Opatrny T, Pilloff H, Rebane A, Sokolov AV, Zubairy MS (2002) FAST CARS: Engineering a laser spectroscopic technique for rapid identification of bacterial spores. P Natl Acad Sci USA 99 (17):10994–11001. doi:10.1073/pnas.172290899CrossRef Scully MO, Kattawar GW, Lucht RP, Opatrny T, Pilloff H, Rebane A, Sokolov AV, Zubairy MS (2002) FAST CARS: Engineering a laser spectroscopic technique for rapid identification of bacterial spores. P Natl Acad Sci USA 99 (17):10994–11001. doi:10.1073/pnas.172290899CrossRef
40.
Zurück zum Zitat Manoharan R, Ghiamati E, Britton KA, Nelson WH, Sperry JF (1991) Resonance Raman-spectra of aqueous pollen suspensions with 222.5–242.4 nm pulsed laser excitation. Appl Spectrosc 45 (2):307–311CrossRef Manoharan R, Ghiamati E, Britton KA, Nelson WH, Sperry JF (1991) Resonance Raman-spectra of aqueous pollen suspensions with 222.5–242.4 nm pulsed laser excitation. Appl Spectrosc 45 (2):307–311CrossRef
41.
Zurück zum Zitat Nelson WH, Dasari R, Feld M, Sperry JF (2004) Intensities of calcium dipicolinate and Bacillus subtilis spore Raman spectra excited with 244 nm light. Appl Spectrosc 58 (12):1408–1412CrossRef Nelson WH, Dasari R, Feld M, Sperry JF (2004) Intensities of calcium dipicolinate and Bacillus subtilis spore Raman spectra excited with 244 nm light. Appl Spectrosc 58 (12):1408–1412CrossRef
42.
Zurück zum Zitat Pestov D, Zhi MC, Sariyanni ZE, Kalugin NG, Kolomenskii AA, Murawski R, Paulus GG, Sautenkov VA, Schuessler H, Sokolov AV, Welch GR, Rostovtsev YV, Siebert T, Akimov DA, Graefe S, Kiefer W, Scully MO (2005) Visible and UV coherent Raman spectroscopy of dipicolinic acid. P Natl Acad Sci USA 102 (42):14976–14981. doi:10.1073/pnas.0506529102CrossRef Pestov D, Zhi MC, Sariyanni ZE, Kalugin NG, Kolomenskii AA, Murawski R, Paulus GG, Sautenkov VA, Schuessler H, Sokolov AV, Welch GR, Rostovtsev YV, Siebert T, Akimov DA, Graefe S, Kiefer W, Scully MO (2005) Visible and UV coherent Raman spectroscopy of dipicolinic acid. P Natl Acad Sci USA 102 (42):14976–14981. doi:10.1073/pnas.0506529102CrossRef
43.
Zurück zum Zitat Grun J, Manka CK, Nikitin S, Zabetakis D, Comanescu G, Gillis D, Bowles J (2007) Identification of Bacteria from Two-Dimensional Resonant-Raman Spectra. Anal Chem 79 (14):5489–5493. doi:10.1021/ac070681hCrossRef Grun J, Manka CK, Nikitin S, Zabetakis D, Comanescu G, Gillis D, Bowles J (2007) Identification of Bacteria from Two-Dimensional Resonant-Raman Spectra. Anal Chem 79 (14):5489–5493. doi:10.1021/ac070681hCrossRef
44.
Zurück zum Zitat Müller M, Zumbusch A (2007) Coherent anti-stokes Raman scattering microscopy. ChemPhysChem 8 (15):2157–2170. doi:10.1002/cphc.200700202CrossRef Müller M, Zumbusch A (2007) Coherent anti-stokes Raman scattering microscopy. ChemPhysChem 8 (15):2157–2170. doi:10.1002/cphc.200700202CrossRef
45.
Zurück zum Zitat Kalasinsky KS, Hadfield T, Shea AA, Kalasinsky VF, Nelson MP, Neiss J, Drauch AJ, Vanni GS, Treado PJ (2007) Raman chemical imaging spectroscopy reagentless detection and identification of pathogens: Signature development and evaluation. Anal Chem 79 (7):2658–2673. doi:10.1021/ac0700575CrossRef Kalasinsky KS, Hadfield T, Shea AA, Kalasinsky VF, Nelson MP, Neiss J, Drauch AJ, Vanni GS, Treado PJ (2007) Raman chemical imaging spectroscopy reagentless detection and identification of pathogens: Signature development and evaluation. Anal Chem 79 (7):2658–2673. doi:10.1021/ac0700575CrossRef
46.
Zurück zum Zitat Cheng JX, Xie XS (2004) Coherent anti-Stokes Raman scattering microscopy: Instrumentation, theory, and applications. J Phys Chem B 108 (3):827–840. doi:10.1021/jp035693vCrossRef Cheng JX, Xie XS (2004) Coherent anti-Stokes Raman scattering microscopy: Instrumentation, theory, and applications. J Phys Chem B 108 (3):827–840. doi:10.1021/jp035693vCrossRef
47.
Zurück zum Zitat Silberberg Y (2009) Quantum Coherent Control for Nonlinear Spectroscopy and Microscopy. Annu Rev Phys Chem 60:277–292. doi:10.1146/annurev.physchem.040808.090427CrossRef Silberberg Y (2009) Quantum Coherent Control for Nonlinear Spectroscopy and Microscopy. Annu Rev Phys Chem 60:277–292. doi:10.1146/annurev.physchem.040808.090427CrossRef
48.
Zurück zum Zitat Downes A, Mouras R, Elfick A (2009) A versatile CARS microscope for biological imaging. J Raman Spectrosc 40 (7): 757–762. doi:10.1002/jrs.2249CrossRef Downes A, Mouras R, Elfick A (2009) A versatile CARS microscope for biological imaging. J Raman Spectrosc 40 (7): 757–762. doi:10.1002/jrs.2249CrossRef
49.
Zurück zum Zitat Rodriguez LG, Lockett SJ, Holtom GR (2006) Coherent anti-stokes Raman scattering microscopy: A biological review. Cytom Part A 69A (8):779–791. doi:10.1002/cyto.a.20299CrossRef Rodriguez LG, Lockett SJ, Holtom GR (2006) Coherent anti-stokes Raman scattering microscopy: A biological review. Cytom Part A 69A (8):779–791. doi:10.1002/cyto.a.20299CrossRef
50.
Zurück zum Zitat Naumann D (2001) FT-infrared and FT-Raman Spectroscopy in biomedical research. In: Gremlich H-U, Yang B (eds) Infrared and Raman spectroscopy of biological material. Naumann D (2001) FT-infrared and FT-Raman Spectroscopy in biomedical research. In: Gremlich H-U, Yang B (eds) Infrared and Raman spectroscopy of biological material.
51.
Zurück zum Zitat Petrov GI, Yakovlev VV, Sokolov AV, Scully MO (2005) Detection of Bacillus subtilis spores in water by means of broadband coherent anti-Stokes Raman spectroscopy. Opt Express 13 (23):9537–9542CrossRef Petrov GI, Yakovlev VV, Sokolov AV, Scully MO (2005) Detection of Bacillus subtilis spores in water by means of broadband coherent anti-Stokes Raman spectroscopy. Opt Express 13 (23):9537–9542CrossRef
52.
Zurück zum Zitat Pestov D, Murawski RK, Ariunbold GO, Wang X, Zhi MC, Sokolov AV, Sautenkov VA, Rostovtsev YV, Dogariu A, Huang Y, Scully MO (2007) Optimizing the laser-pulse configuration for coherent Raman spectroscopy. Science 316 (5822):265–268. doi:10.1126/science.1139055CrossRef Pestov D, Murawski RK, Ariunbold GO, Wang X, Zhi MC, Sokolov AV, Sautenkov VA, Rostovtsev YV, Dogariu A, Huang Y, Scully MO (2007) Optimizing the laser-pulse configuration for coherent Raman spectroscopy. Science 316 (5822):265–268. doi:10.1126/science.1139055CrossRef
53.
Zurück zum Zitat Pestov D, Wang X, Ariunbold GO, Murawski RK, Sautenkov VA, Dogariu A, Sokolov AV, Scully MO (2008) Single-shot detection of bacterial endospores via coherent Raman spectroscopy. P Natl Acad Sci USA 105 (2):422–427. doi:10.1073/pnas.0710427105CrossRef Pestov D, Wang X, Ariunbold GO, Murawski RK, Sautenkov VA, Dogariu A, Sokolov AV, Scully MO (2008) Single-shot detection of bacterial endospores via coherent Raman spectroscopy. P Natl Acad Sci USA 105 (2):422–427. doi:10.1073/pnas.0710427105CrossRef
54.
Zurück zum Zitat Petrov GI, Arora R, Yakovlev VV, Wang X, Sokolov AV, Scully MO (2007) Comparison of coherent and spontaneous Raman microspectroscopies for noninvasive detection of single bacterial endospores. P Natl Acad Sci USA 104 (19):7776–7779. doi:10.1073/pnas.0702107104CrossRef Petrov GI, Arora R, Yakovlev VV, Wang X, Sokolov AV, Scully MO (2007) Comparison of coherent and spontaneous Raman microspectroscopies for noninvasive detection of single bacterial endospores. P Natl Acad Sci USA 104 (19):7776–7779. doi:10.1073/pnas.0702107104CrossRef
55.
Zurück zum Zitat Harz A, Rosch P, Popp J (2009) Vibrational Spectroscopy-A Powerful Tool for the Rapid Identification of Microbial Cells at the Single-Cell Level. Cytom Part A 75A (2):104–113. doi:10.1002/cyto.a.20682CrossRef Harz A, Rosch P, Popp J (2009) Vibrational Spectroscopy-A Powerful Tool for the Rapid Identification of Microbial Cells at the Single-Cell Level. Cytom Part A 75A (2):104–113. doi:10.1002/cyto.a.20682CrossRef
56.
Zurück zum Zitat Ooi CHR (2009) Theory of coherent anti-Stokes Raman scattering for mesoscopic particle with complex molecules: angular-dependent spectrum. J Raman Spectrosc 40 (7):714–725.CrossRef Ooi CHR (2009) Theory of coherent anti-Stokes Raman scattering for mesoscopic particle with complex molecules: angular-dependent spectrum. J Raman Spectrosc 40 (7):714–725.CrossRef
57.
Zurück zum Zitat Aroca R, Rodriguez-Llorente S, (1997) Surface-enhanced vibrational spectroscopy. J Molec Struct 408–409: 17–22.CrossRef Aroca R, Rodriguez-Llorente S, (1997) Surface-enhanced vibrational spectroscopy. J Molec Struct 408–409: 17–22.CrossRef
58.
Zurück zum Zitat Fleischmann M, Hendra P, McQuillan A (1974) Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett 26 (2):163–166CrossRef Fleischmann M, Hendra P, McQuillan A (1974) Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett 26 (2):163–166CrossRef
59.
Zurück zum Zitat Jeanmaire D, Van Duyne R (1977) Surface Raman Spectroelectrochemistry. Part I Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J Electroanal Chem 84:1–20.CrossRef Jeanmaire D, Van Duyne R (1977) Surface Raman Spectroelectrochemistry. Part I Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J Electroanal Chem 84:1–20.CrossRef
60.
Zurück zum Zitat Albrecht M G, Creighton JA (1977) Anomalously intense Raman spectra of pyridine at a silver electrode. J Amer Chem Soc 99 (15), 5215–5217.CrossRef Albrecht M G, Creighton JA (1977) Anomalously intense Raman spectra of pyridine at a silver electrode. J Amer Chem Soc 99 (15), 5215–5217.CrossRef
61.
Zurück zum Zitat Moskovits M, (1985) Surface-enhanced spectroscopy. Rev Mod Phys 57 (3). Moskovits M, (1985) Surface-enhanced spectroscopy. Rev Mod Phys 57 (3).
62.
Zurück zum Zitat Schrader B (ed) (1995) Infrared and Raman spectroscopy: Methods and applications. VCH, New York, NY.CrossRef Schrader B (ed) (1995) Infrared and Raman spectroscopy: Methods and applications. VCH, New York, NY.CrossRef
63.
Zurück zum Zitat Lee PC, Meisel D (1982) Adsorption and Surface-Enhanced Raman of Dyes on Silver and Gold Sols. J Phys Chem 86:3391CrossRef Lee PC, Meisel D (1982) Adsorption and Surface-Enhanced Raman of Dyes on Silver and Gold Sols. J Phys Chem 86:3391CrossRef
64.
Zurück zum Zitat Efrima S, Zeiri L (2009) Understanding SERS of bacteria. J Raman Spectrosc 40 (3):277–288. doi:10.1002/jrs.2121CrossRef Efrima S, Zeiri L (2009) Understanding SERS of bacteria. J Raman Spectrosc 40 (3):277–288. doi:10.1002/jrs.2121CrossRef
65.
Zurück zum Zitat Jarvis RM, Law N, Shadi LT, O’Brien P, Lloyd JR, Goodacre R (2008) Surface-enhanced Raman scattering from intracellular and extracellular bacterial locations. Anal Chem 80 (17):6741–6746. doi:10.1021/ac800838vCrossRef Jarvis RM, Law N, Shadi LT, O’Brien P, Lloyd JR, Goodacre R (2008) Surface-enhanced Raman scattering from intracellular and extracellular bacterial locations. Anal Chem 80 (17):6741–6746. doi:10.1021/ac800838vCrossRef
66.
Zurück zum Zitat Yan F, Wabuyele MB, Griffin GD, Vass AA, Vo-Dinh T (2005) Surface-enhanced Raman scattering, detection of chemical and biological agent simulants. IEEE Sens J 5 (4):665–670. doi:10.1109/jsen.2005.850993CrossRef Yan F, Wabuyele MB, Griffin GD, Vass AA, Vo-Dinh T (2005) Surface-enhanced Raman scattering, detection of chemical and biological agent simulants. IEEE Sens J 5 (4):665–670. doi:10.1109/jsen.2005.850993CrossRef
67.
Zurück zum Zitat Guicheteau J, Argue L, Emge D, Hyre A, Jacobson M, Christesen S (2008) Bacillus spore classification via surface-enhanced Raman spectroscopy and principal component analysis. Appl Spectrosc 62 (3):267–272CrossRef Guicheteau J, Argue L, Emge D, Hyre A, Jacobson M, Christesen S (2008) Bacillus spore classification via surface-enhanced Raman spectroscopy and principal component analysis. Appl Spectrosc 62 (3):267–272CrossRef
68.
Zurück zum Zitat Félix-Rivera H, González R, Rodríguez G, Primera-Pedrozo OM, Ríos-Velázquez C, Hernández-Rivera SP (2011) Improving SERS Detection of Bacillus thuringiensis using Silver Nanoparticles Reduced with Hydroxylamine and with Citrate Capped Borohydride. International Journal of Spectroscopy 2011. doi:10.1155/2011/989504 Félix-Rivera H, González R, Rodríguez G, Primera-Pedrozo OM, Ríos-Velázquez C, Hernández-Rivera SP (2011) Improving SERS Detection of Bacillus thuringiensis using Silver Nanoparticles Reduced with Hydroxylamine and with Citrate Capped Borohydride. International Journal of Spectroscopy 2011. doi:10.1155/2011/989504
69.
Zurück zum Zitat Shanmukh S, Jones L, Driskell J, Zhao YP, Dluhy R, Tripp RA (2006) Rapid and sensitive detection of respiratory virus molecular signatures using a silver nanorod array SERS substrate. Nano Lett 6 (11):2630–2636. doi:10.1021/nl061666fCrossRef Shanmukh S, Jones L, Driskell J, Zhao YP, Dluhy R, Tripp RA (2006) Rapid and sensitive detection of respiratory virus molecular signatures using a silver nanorod array SERS substrate. Nano Lett 6 (11):2630–2636. doi:10.1021/nl061666fCrossRef
70.
Zurück zum Zitat Sengupta A, Laucks ML, Dildine N, Drapala E, Davis EJ (2005) Bioaerosol characterization by surface-enhanced Raman spectroscopy (SERS). J Aerosol Sci 36 (5–6):651–664. doi:10.1016/j.jaerosci.2004.11.001CrossRef Sengupta A, Laucks ML, Dildine N, Drapala E, Davis EJ (2005) Bioaerosol characterization by surface-enhanced Raman spectroscopy (SERS). J Aerosol Sci 36 (5–6):651–664. doi:10.1016/j.jaerosci.2004.11.001CrossRef
71.
Zurück zum Zitat Sengupta A, Brar N, Davis EJ (2007) Bioaerosol detection and characterization by surface-enhanced Raman spectroscopy. J Colloid Interf Sci 309 (1):36–43. doi:10.1016/j.jcis.2007.02.015CrossRef Sengupta A, Brar N, Davis EJ (2007) Bioaerosol detection and characterization by surface-enhanced Raman spectroscopy. J Colloid Interf Sci 309 (1):36–43. doi:10.1016/j.jcis.2007.02.015CrossRef
72.
Zurück zum Zitat Jarvis RM, Goodacre R (2008) Characterisation and identification of bacteria using SERS. Chem Soc Rev 37 (5):931–936. doi:10.1039/b705973fCrossRef Jarvis RM, Goodacre R (2008) Characterisation and identification of bacteria using SERS. Chem Soc Rev 37 (5):931–936. doi:10.1039/b705973fCrossRef
73.
Zurück zum Zitat Sengupta A, Mujacic M, Davis EJ (2006) Detection of bacteria by surface-enhanced Raman spectroscopy. Anal and Bioanal Chem 386 (5):1379–1386. doi:10.1007/s00216-006-0711-zCrossRef Sengupta A, Mujacic M, Davis EJ (2006) Detection of bacteria by surface-enhanced Raman spectroscopy. Anal and Bioanal Chem 386 (5):1379–1386. doi:10.1007/s00216-006-0711-zCrossRef
74.
Zurück zum Zitat Sengupta A, Laucks ML, Davis EJ (2005) Surface-enhanced Raman spectroscopy of bacteria and pollen. Appl Spectrosc 59 (8):1016–1023CrossRef Sengupta A, Laucks ML, Davis EJ (2005) Surface-enhanced Raman spectroscopy of bacteria and pollen. Appl Spectrosc 59 (8):1016–1023CrossRef
75.
Zurück zum Zitat Wang YL, Lee K, Irudayaraj J (2010) Silver Nanosphere SERS Probes for Sensitive Identification of Pathogens. J Phys Chem C 114 (39):16122–16128. doi:10.1021/jp1015406CrossRef Wang YL, Lee K, Irudayaraj J (2010) Silver Nanosphere SERS Probes for Sensitive Identification of Pathogens. J Phys Chem C 114 (39):16122–16128. doi:10.1021/jp1015406CrossRef
76.
Zurück zum Zitat Knauer M, Ivleva NP, Niessner R, Haisch C (2010) Optimized Surface-enhanced Raman Scattering (SERS) Colloids for the Characterization of Microorganisms. Anal Sci 26 (7):761–766CrossRef Knauer M, Ivleva NP, Niessner R, Haisch C (2010) Optimized Surface-enhanced Raman Scattering (SERS) Colloids for the Characterization of Microorganisms. Anal Sci 26 (7):761–766CrossRef
77.
Zurück zum Zitat Zhang XY, Young MA, Lyandres O, Van Duyne RP (2005) Rapid detection of an anthrax biomarker by surface-enhanced Raman spectroscopy. J Am Chem Soc 127 (12):4484–4489. doi:10.1021/ja0436623b0bCrossRef Zhang XY, Young MA, Lyandres O, Van Duyne RP (2005) Rapid detection of an anthrax biomarker by surface-enhanced Raman spectroscopy. J Am Chem Soc 127 (12):4484–4489. doi:10.1021/ja0436623b0bCrossRef
78.
Zurück zum Zitat Dhawan A, Du Y, Yan F, Gerhold MD, Misra V, Vo-Dinh T (2010) Methodologies for Developing Surface-Enhanced Raman Scattering (SERS) Substrates for Detection of Chemical and Biological Molecules. IEEE Sens J 10 (3):608–616. doi:10.1109/jsen.2009.2038634CrossRef Dhawan A, Du Y, Yan F, Gerhold MD, Misra V, Vo-Dinh T (2010) Methodologies for Developing Surface-Enhanced Raman Scattering (SERS) Substrates for Detection of Chemical and Biological Molecules. IEEE Sens J 10 (3):608–616. doi:10.1109/jsen.2009.2038634CrossRef
79.
Zurück zum Zitat Cheng HW, Luo WQ, Wen GL, Huan SY, Shen GL, Yu RQ (2010) Surface-enhanced Raman scattering based detection of bacterial biomarker and potential surface reaction species. Analyst 135 (11):2993–3001. doi:10.1039/c0an00421aCrossRef Cheng HW, Luo WQ, Wen GL, Huan SY, Shen GL, Yu RQ (2010) Surface-enhanced Raman scattering based detection of bacterial biomarker and potential surface reaction species. Analyst 135 (11):2993–3001. doi:10.1039/c0an00421aCrossRef
80.
Zurück zum Zitat Chan JW, Esposito AP, Talley CE, Hollars CW, Lane SM, Huser T (2004) Reagentless identification of single bacterial spores in aqueous solution by confocal laser tweezers Raman spectroscopy. Anal Chem 76 (3):599–603. doi:10.1021/ac0350155CrossRef Chan JW, Esposito AP, Talley CE, Hollars CW, Lane SM, Huser T (2004) Reagentless identification of single bacterial spores in aqueous solution by confocal laser tweezers Raman spectroscopy. Anal Chem 76 (3):599–603. doi:10.1021/ac0350155CrossRef
81.
Zurück zum Zitat Butler JR, Wills JB, Mitchem L, Burnham DR, McGloin D, Reid JP (2009) Spectroscopic characterisation and manipulation of arrays of sub-picolitre aerosol droplets. Lab Chip 9 (4):521–528. doi:10.1039/b814545hCrossRef Butler JR, Wills JB, Mitchem L, Burnham DR, McGloin D, Reid JP (2009) Spectroscopic characterisation and manipulation of arrays of sub-picolitre aerosol droplets. Lab Chip 9 (4):521–528. doi:10.1039/b814545hCrossRef
82.
Zurück zum Zitat Schweiger G (1990) Raman-Scattering on Single Aerosol-Particles and on Flowing Aerosols—A Review. J Aerosol Sci 21 (4):483–509CrossRef Schweiger G (1990) Raman-Scattering on Single Aerosol-Particles and on Flowing Aerosols—A Review. J Aerosol Sci 21 (4):483–509CrossRef
83.
Zurück zum Zitat Petrov DV (2007) Raman spectroscopy of optically trapped particles. J Opt A-Pure Appl Op 9 (8):S139–S156. doi:10.1088/1464-4258/9/8/s06CrossRef Petrov DV (2007) Raman spectroscopy of optically trapped particles. J Opt A-Pure Appl Op 9 (8):S139–S156. doi:10.1088/1464-4258/9/8/s06CrossRef
84.
Zurück zum Zitat Hopkins RJ, Mitchem L, Ward AD, Reid JP (2004) Control and characterization of a single aerosol droplet in a single-beam gradient-force optical trap. Phys Chem Chem Phys 6 (21):4924–4927. doi:10.1039/b414459 gCrossRef Hopkins RJ, Mitchem L, Ward AD, Reid JP (2004) Control and characterization of a single aerosol droplet in a single-beam gradient-force optical trap. Phys Chem Chem Phys 6 (21):4924–4927. doi:10.1039/b414459 gCrossRef
85.
Zurück zum Zitat Lübben JF, Mund C, Schrader B, Zellner R (1999) Uncertainties in temperature measurements of optically levitated single aerosol particles by Raman spectroscopy. J Mol Struc 480–481:311–316CrossRef Lübben JF, Mund C, Schrader B, Zellner R (1999) Uncertainties in temperature measurements of optically levitated single aerosol particles by Raman spectroscopy. J Mol Struc 480–481:311–316CrossRef
86.
Zurück zum Zitat Alexander TA, Pellegrino PM, Gillespie JB (2003) Near-infrared surface-enhanced-Raman-scattering-mediated detection of single optically trapped bacterial spores. Appl Spectrosc 57 (11):1340–1345CrossRef Alexander TA, Pellegrino PM, Gillespie JB (2003) Near-infrared surface-enhanced-Raman-scattering-mediated detection of single optically trapped bacterial spores. Appl Spectrosc 57 (11):1340–1345CrossRef
87.
Zurück zum Zitat Symes R, Gilham RJJ, Sayer RM, Reid JP (2005) An investigation of the factors influencing the detection sensitivity of cavity enhanced Raman scattering for probing aqueous binary aerosol droplets. Phys Chem Chem Phys 7 (7): 1414–1422. doi:10.1039/b500385 gCrossRef Symes R, Gilham RJJ, Sayer RM, Reid JP (2005) An investigation of the factors influencing the detection sensitivity of cavity enhanced Raman scattering for probing aqueous binary aerosol droplets. Phys Chem Chem Phys 7 (7): 1414–1422. doi:10.1039/b500385 gCrossRef
88.
Zurück zum Zitat Symes R, Sayer RM, Reid JP (2004) Cavity enhanced droplet spectroscopy: Principles, perspectives and prospects. Phys Chem Chem Phys 6 (3):474–487. doi:10.1039/b313370bCrossRef Symes R, Sayer RM, Reid JP (2004) Cavity enhanced droplet spectroscopy: Principles, perspectives and prospects. Phys Chem Chem Phys 6 (3):474–487. doi:10.1039/b313370bCrossRef
89.
Zurück zum Zitat Hargreaves M, Macleod N, Brewster V, Munshi T, Edwards H, Matousek P (2009) Application of portable Raman spectroscopy and benchtop spatially offset Raman spectroscopy to interrogate concealed biomaterials. J Raman Spectrosc 40:1875–1880. doi:10.1002/jrs.2335CrossRef Hargreaves M, Macleod N, Brewster V, Munshi T, Edwards H, Matousek P (2009) Application of portable Raman spectroscopy and benchtop spatially offset Raman spectroscopy to interrogate concealed biomaterials. J Raman Spectrosc 40:1875–1880. doi:10.1002/jrs.2335CrossRef
90.
Zurück zum Zitat Maher J, Berger A (2010) Determination of ideal offset for spatially offset Raman Spectroscopy. Appl Spectrosc 64 (1):61–65CrossRef Maher J, Berger A (2010) Determination of ideal offset for spatially offset Raman Spectroscopy. Appl Spectrosc 64 (1):61–65CrossRef
91.
Zurück zum Zitat Matousek P (2006) Inverse spatially offset Raman Spectroscopy for deep noninvasive probing of turbid media. Appl Spectrosc 60 (11):1341–1347CrossRef Matousek P (2006) Inverse spatially offset Raman Spectroscopy for deep noninvasive probing of turbid media. Appl Spectrosc 60 (11):1341–1347CrossRef
92.
Zurück zum Zitat Balakrishnan G, Hu Y, Nielsen SB, Spiro TG (2005) Tunable kHz Deep Ultraviolet (193–210 nm) Laser for Raman Application. Appl Spectrosc 59 (6):776–781CrossRef Balakrishnan G, Hu Y, Nielsen SB, Spiro TG (2005) Tunable kHz Deep Ultraviolet (193–210 nm) Laser for Raman Application. Appl Spectrosc 59 (6):776–781CrossRef
93.
Zurück zum Zitat Ayora MJ, Ballesteros L, Perez R, Ruperez A, Laserna JJ (1997) Detection of atmospheric contaminants in aerosols by surface-enhanced Raman spectrometry. Anal Chim Acta 355 (1):15–21CrossRef Ayora MJ, Ballesteros L, Perez R, Ruperez A, Laserna JJ (1997) Detection of atmospheric contaminants in aerosols by surface-enhanced Raman spectrometry. Anal Chim Acta 355 (1):15–21CrossRef
94.
Zurück zum Zitat Vehring R, Aardahl CL, Schweiger G, Davis EJ (1998) The characterization of fine particles originating from an uncharged aerosol: Size dependence and detection limits for Raman analysis. J Aerosol Sci 29 (9):1045–1061CrossRef Vehring R, Aardahl CL, Schweiger G, Davis EJ (1998) The characterization of fine particles originating from an uncharged aerosol: Size dependence and detection limits for Raman analysis. J Aerosol Sci 29 (9):1045–1061CrossRef
95.
Zurück zum Zitat Kahraman M, Yazici MM, Sahin F, Culha M (2007) Experimental parameters influencing surface-enhanced Raman scattering of bacteria. J Biomed Opt 12 (5). doi:10.1117/1.2798640 Kahraman M, Yazici MM, Sahin F, Culha M (2007) Experimental parameters influencing surface-enhanced Raman scattering of bacteria. J Biomed Opt 12 (5). doi:10.1117/1.2798640
96.
Zurück zum Zitat Moore D (2009) Optimal coherent control of sensitivity and selectivity in spectrochemical analysis. Anal Bioanal Chem 393 (1):51–56. doi:10.1007/s00216-008-2318-zCrossRef Moore D (2009) Optimal coherent control of sensitivity and selectivity in spectrochemical analysis. Anal Bioanal Chem 393 (1):51–56. doi:10.1007/s00216-008-2318-zCrossRef
97.
Zurück zum Zitat Chalmers JL, Griffiths PR (eds) (2002) Handbook of Vibrational Spectroscopy, vol I. Theory and Instrumentation. John Wiley & Sons Ltd, Chichester Chalmers JL, Griffiths PR (eds) (2002) Handbook of Vibrational Spectroscopy, vol I. Theory and Instrumentation. John Wiley & Sons Ltd, Chichester
98.
Zurück zum Zitat Xie C, Mace J, Dinno MA, Li YQ, Tang W, Newton RJ, Gemperline PJ (2005) Identification of single bacterial cells in aqueous solution using confocal laser tweezers Raman spectroscopy. Anal Chem 77 (14):4390–4397. doi:10.1021/ac0504971CrossRef Xie C, Mace J, Dinno MA, Li YQ, Tang W, Newton RJ, Gemperline PJ (2005) Identification of single bacterial cells in aqueous solution using confocal laser tweezers Raman spectroscopy. Anal Chem 77 (14):4390–4397. doi:10.1021/ac0504971CrossRef
99.
Zurück zum Zitat Schmid U, Rosch P, Krause M, Harz M, Popp J, Baumann K (2009) Gaussian mixture discriminant analysis for the single-cell differentiation of bacteria using micro-Raman spectroscopy. Chemometr Intell Lab 96 (2):159–171. doi:10.1016/j.chemolab.2009.01.008CrossRef Schmid U, Rosch P, Krause M, Harz M, Popp J, Baumann K (2009) Gaussian mixture discriminant analysis for the single-cell differentiation of bacteria using micro-Raman spectroscopy. Chemometr Intell Lab 96 (2):159–171. doi:10.1016/j.chemolab.2009.01.008CrossRef
100.
Zurück zum Zitat Jarvis RM, Brooker A, Goodacre R (2004) Surface-enhanced Raman spectroscopy for bacterial discrimination utilizing a scanning electron microscope with a Raman spectroscopy interface. Anal Chem 76 (17):5198–5202. doi:10.1021/ac049663fCrossRef Jarvis RM, Brooker A, Goodacre R (2004) Surface-enhanced Raman spectroscopy for bacterial discrimination utilizing a scanning electron microscope with a Raman spectroscopy interface. Anal Chem 76 (17):5198–5202. doi:10.1021/ac049663fCrossRef
101.
Zurück zum Zitat Kazanci M, Schulte JP, Douglas C, Fratzl P, Pink D, Smith-Palmer T (2009) Tuning the Surface-Enhanced Raman Scattering Effect to Different Molecular Groups by Switching the Silver Colloid Solution pH. Appl Spectrosc 63 (2):214–223CrossRef Kazanci M, Schulte JP, Douglas C, Fratzl P, Pink D, Smith-Palmer T (2009) Tuning the Surface-Enhanced Raman Scattering Effect to Different Molecular Groups by Switching the Silver Colloid Solution pH. Appl Spectrosc 63 (2):214–223CrossRef
102.
Zurück zum Zitat Alvarez-Puebla RnA, Arceo E, Goulet PJG, Garrido JnJ, Aroca RF (2005) Role of Nanoparticle Surface Charge in Surface-Enhanced Raman Scattering. The J Phys Chem B 109 (9):3787–3792. doi:10.1021/jp045015oCrossRef Alvarez-Puebla RnA, Arceo E, Goulet PJG, Garrido JnJ, Aroca RF (2005) Role of Nanoparticle Surface Charge in Surface-Enhanced Raman Scattering. The J Phys Chem B 109 (9):3787–3792. doi:10.1021/jp045015oCrossRef
103.
Zurück zum Zitat Guicheteau J, Christesen S, Emge D, Tripathi A (2010) Bacterial mixture identification using Raman and surface-enhanced Raman chemical imaging. J Raman Spectrosc 41 (12):1632–1637. doi:10.1002/jrs.2601CrossRef Guicheteau J, Christesen S, Emge D, Tripathi A (2010) Bacterial mixture identification using Raman and surface-enhanced Raman chemical imaging. J Raman Spectrosc 41 (12):1632–1637. doi:10.1002/jrs.2601CrossRef
104.
Zurück zum Zitat Guicheteau J (2006) Principal component analysis of bacteria using surface-enhanced Raman spectroscopy. Proceedings of SPIE–the international society for optical engineering 6218 (1):62180–62181CrossRef Guicheteau J (2006) Principal component analysis of bacteria using surface-enhanced Raman spectroscopy. Proceedings of SPIE–the international society for optical engineering 6218 (1):62180–62181CrossRef
105.
Zurück zum Zitat Griffiths WD, Decosemo GA L (1994) The assessment of bioaerosols-A critical-review, J Aerosol Sci 25, 1425–1458CrossRef Griffiths WD, Decosemo GA L (1994) The assessment of bioaerosols-A critical-review, J Aerosol Sci 25, 1425–1458CrossRef
106.
Zurück zum Zitat Daniels JK, Caldwell TP, Christensen KA, Chumanov G (2006) Monitoring the kinetics of Bacillus subtilis endospore germination via surface-enhanced Raman scattering spectroscopy, Anal Chem 78, 1724–1729CrossRef Daniels JK, Caldwell TP, Christensen KA, Chumanov G (2006) Monitoring the kinetics of Bacillus subtilis endospore germination via surface-enhanced Raman scattering spectroscopy, Anal Chem 78, 1724–1729CrossRef
Metadaten
Titel
Detection of Bioaerosols Using Raman Spectroscopy
verfasst von
Hilsamar Félix-Rivera
Samuel P. Hernández-Rivera
Copyright-Jahr
2014
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-1-4419-5582-1_10

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.