Skip to main content
Erschienen in: Mobile Networks and Applications 3/2020

08.09.2018

Detection of Circulating Tumor Cells in Fluorescence Microscopy Images Based on ANN Classifier

verfasst von: Kouki Tsuji, Huimin Lu, Joo Kooi Tan, Hyoungseop Kim, Kazue Yoneda, Fumihiro Tanaka

Erschienen in: Mobile Networks and Applications | Ausgabe 3/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Circulating tumor cells (CTCs) is a clinical biomarker for cancer metastasis. CTCs are cells circulating in the body of patients by being separated from primary cancer and entering into blood vessel. CTCs spread every positions in the body, and this is one of the cause of cancer metastasis. To analyze them, pathologists get information about metastasis without invasive test. CTCs test is conducted by analyzing the blood sample from patient. The fluorescence microscope generates a large number of images per each sample, and images contain a lot of cells. There are only a few CTCs in images and cells often have blurry boundaries. So CTCs identification is not an easy work for pathologists. In this paper, we develop an automatic CTCs identification method in fluorescence microscopy images. This proposed method has three section. In the first approach, we conduct the cell segmentation in images by using filtering methods. Next, we compute feature values from each CTC candidate region. Finally, we identify CTCs using artificial neural network algorithm. We apply the proposed method to 5895 microscopy images (7 samplesas), and evaluate the effectiveness of our proposed method by using leave-one-out cross validation. We achieve the result of performance tests, a true positive rate is 92.57% and false positive rate is 9.156%.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Weitere Produktempfehlungen anzeigen
Literatur
1.
Zurück zum Zitat Tanaka F, Yoneda K, Hasegawa S (2010) Circulating tumor cells (CTCs) in lung cancer: current status and future perspectives. Lung Cancer: Targets and Therapy 1:77–84 Tanaka F, Yoneda K, Hasegawa S (2010) Circulating tumor cells (CTCs) in lung cancer: current status and future perspectives. Lung Cancer: Targets and Therapy 1:77–84
2.
Zurück zum Zitat Allard WJ, Matera J, Miller MC, Repollet M, Connelly MC, Rao C, Tibbe AG, Uhr JW, Terstappen LW (2004) Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy or patients with nonmalignant diseases. Clin Cancer Res 10(20):6897–6904CrossRef Allard WJ, Matera J, Miller MC, Repollet M, Connelly MC, Rao C, Tibbe AG, Uhr JW, Terstappen LW (2004) Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy or patients with nonmalignant diseases. Clin Cancer Res 10(20):6897–6904CrossRef
3.
Zurück zum Zitat Ohnaga T, Shimada Y, Moriyama M, Kishi H, Obata T, Takata K, Okumura T, Nagata T, Muraguchi A, Tsukada K (2013) Polymeric microfluidic devices exhibiting sufficient capture of cancer cell line for isolation of circulating tumor cells. Biomed Microdevices 15:611–616CrossRef Ohnaga T, Shimada Y, Moriyama M, Kishi H, Obata T, Takata K, Okumura T, Nagata T, Muraguchi A, Tsukada K (2013) Polymeric microfluidic devices exhibiting sufficient capture of cancer cell line for isolation of circulating tumor cells. Biomed Microdevices 15:611–616CrossRef
4.
Zurück zum Zitat Yoneda K, Chikaishi Y, Kawashima R, So T, Uramoto H, Ohnaga T and Tanaka F (2015) Capture of EpCAM-negative circulating tumor cells (CTCs) with a “Universal CTC-Chip”. AACR Annual Meeting 2015 Yoneda K, Chikaishi Y, Kawashima R, So T, Uramoto H, Ohnaga T and Tanaka F (2015) Capture of EpCAM-negative circulating tumor cells (CTCs) with a “Universal CTC-Chip”. AACR Annual Meeting 2015
5.
Zurück zum Zitat Chikaishi Y, Yoneda K, Ohnaga T, Tanaka F (2017) EpCAM-independent capture of circulating tumor cells with a ‘universal CTC-chip. Oncol Rep 37:77–82CrossRef Chikaishi Y, Yoneda K, Ohnaga T, Tanaka F (2017) EpCAM-independent capture of circulating tumor cells with a ‘universal CTC-chip. Oncol Rep 37:77–82CrossRef
7.
Zurück zum Zitat Usami N, Fukui T, Kondo M, Taniguchi T, Yokoyama T, Mori S, Yokoi K, Horio Y, Shimokita K, Sekido Y, Hida T (2006) Establishment and characterization of four malignant pleural mesothelioma cell lines from Japanese patients. Cancer Sci 97(5):387–394CrossRef Usami N, Fukui T, Kondo M, Taniguchi T, Yokoyama T, Mori S, Yokoi K, Horio Y, Shimokita K, Sekido Y, Hida T (2006) Establishment and characterization of four malignant pleural mesothelioma cell lines from Japanese patients. Cancer Sci 97(5):387–394CrossRef
8.
Zurück zum Zitat Li Q, Sone S, Doi K (2003) Selective enhancement filters for nodules, vessels, and airway walls in two- and three-dimensional CT scans. Med Phys 30(8):2040–2051CrossRef Li Q, Sone S, Doi K (2003) Selective enhancement filters for nodules, vessels, and airway walls in two- and three-dimensional CT scans. Med Phys 30(8):2040–2051CrossRef
9.
Zurück zum Zitat Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1):62–66CrossRef Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1):62–66CrossRef
10.
Zurück zum Zitat Gonzalez RC, Woods RE (1993) Digital image processing, Addison-Wesley Publishing Company, Inc. Gonzalez RC, Woods RE (1993) Digital image processing, Addison-Wesley Publishing Company, Inc.
11.
Zurück zum Zitat Achanta R, Hemami S, Estrada F, Susstrunk S (2009) Frequency-tuned salient region detection. Computer Vision and Pattern Recognition, pp. 1597–1604 Achanta R, Hemami S, Estrada F, Susstrunk S (2009) Frequency-tuned salient region detection. Computer Vision and Pattern Recognition, pp. 1597–1604
12.
Zurück zum Zitat Orlov N, Shamir L, Macura T, Johnston J, Eckley DM, Goldberga IG (2008) WND-CHARM: Multi-purpose image classification using compound image transforms. Pattern Recognition Litters 29(11):1684–1693CrossRef Orlov N, Shamir L, Macura T, Johnston J, Eckley DM, Goldberga IG (2008) WND-CHARM: Multi-purpose image classification using compound image transforms. Pattern Recognition Litters 29(11):1684–1693CrossRef
13.
Zurück zum Zitat Haralick RM, Shanmugam K, Dinstein I (1973) Texture features for image classification. IEEE Trans. on Systems, Man and Cybernetics, Vol.SMC-3 (6):610–621 Haralick RM, Shanmugam K, Dinstein I (1973) Texture features for image classification. IEEE Trans. on Systems, Man and Cybernetics, Vol.SMC-3 (6):610–621
14.
Zurück zum Zitat Conners RW, Tricedl MM, Harlow CA (1982) Segmentation of a high resolution urban scene using texture operations. Computer Vision, Graphics and Image Processing 25(3):273–310CrossRef Conners RW, Tricedl MM, Harlow CA (1982) Segmentation of a high resolution urban scene using texture operations. Computer Vision, Graphics and Image Processing 25(3):273–310CrossRef
15.
Zurück zum Zitat Materka A, Strzelecki M (1998) Texture analysis methods - a review. Technical University of Lodz, Institute of Electronics, COST B11 report, BrusselsMATH Materka A, Strzelecki M (1998) Texture analysis methods - a review. Technical University of Lodz, Institute of Electronics, COST B11 report, BrusselsMATH
16.
Zurück zum Zitat Galloway MM (1974) Texture analysis using gray level run lengths. Computer Graphics and Image Processing 4:127–179 Galloway MM (1974) Texture analysis using gray level run lengths. Computer Graphics and Image Processing 4:127–179
17.
Zurück zum Zitat Tang X (1998) Texture information in run-length matrices. IEEE Transaction on Image Processing 7(11):1602–1609CrossRef Tang X (1998) Texture information in run-length matrices. IEEE Transaction on Image Processing 7(11):1602–1609CrossRef
18.
Zurück zum Zitat Rumelhnrt DE, Hinton GE, Williams RJ (1986) Learning representations by back-propagating errors. Nature 323(6088):533–536CrossRef Rumelhnrt DE, Hinton GE, Williams RJ (1986) Learning representations by back-propagating errors. Nature 323(6088):533–536CrossRef
19.
Zurück zum Zitat Tsuji K, Lu H, Tan J, Kim H, Yoneda K, Tanaka F (2017) Automatic identification of circulating tumor cells in fluorescence microscopy images based on ANN. Proceeding of 2017 2nd International Conference on Biomedical Signal and Image Processing, pp.1–6 Tsuji K, Lu H, Tan J, Kim H, Yoneda K, Tanaka F (2017) Automatic identification of circulating tumor cells in fluorescence microscopy images based on ANN. Proceeding of 2017 2nd International Conference on Biomedical Signal and Image Processing, pp.1–6
20.
Zurück zum Zitat Lu H, Li B, Zhu J, Li Y, Li Y, Xu X, Li H, Li H, Li J (2017) Wound intensity correction and segmentation with convolutional neural networks. Concurrency and Computation: Practice and Experience 29(6):e3927CrossRef Lu H, Li B, Zhu J, Li Y, Li Y, Xu X, Li H, Li H, Li J (2017) Wound intensity correction and segmentation with convolutional neural networks. Concurrency and Computation: Practice and Experience 29(6):e3927CrossRef
22.
Zurück zum Zitat Yoshino Y, Miyajima T, Lu H, Tan J, Kim H, Murakami S, Aoki T, Tachibana R, Hirano Y, Kido S (2017) Automatic classification of lung nodules on MDCT images with the temporal subtraction technique. Int J Comput Assist Radiol Surg 12(10):1789–1798CrossRef Yoshino Y, Miyajima T, Lu H, Tan J, Kim H, Murakami S, Aoki T, Tachibana R, Hirano Y, Kido S (2017) Automatic classification of lung nodules on MDCT images with the temporal subtraction technique. Int J Comput Assist Radiol Surg 12(10):1789–1798CrossRef
24.
Zurück zum Zitat Kingma DP and Ba JL (2015) ADAM: A method for stochastic optimization. International Conference on Learning Representations 2015 Kingma DP and Ba JL (2015) ADAM: A method for stochastic optimization. International Conference on Learning Representations 2015
25.
Zurück zum Zitat Jolliffe IT (2002) Principal component analysis, Second edn. Springer, Berlin Jolliffe IT (2002) Principal component analysis, Second edn. Springer, Berlin
Metadaten
Titel
Detection of Circulating Tumor Cells in Fluorescence Microscopy Images Based on ANN Classifier
verfasst von
Kouki Tsuji
Huimin Lu
Joo Kooi Tan
Hyoungseop Kim
Kazue Yoneda
Fumihiro Tanaka
Publikationsdatum
08.09.2018
Verlag
Springer US
Erschienen in
Mobile Networks and Applications / Ausgabe 3/2020
Print ISSN: 1383-469X
Elektronische ISSN: 1572-8153
DOI
https://doi.org/10.1007/s11036-018-1121-0

Weitere Artikel der Ausgabe 3/2020

Mobile Networks and Applications 3/2020 Zur Ausgabe

Neuer Inhalt