Skip to main content
Erschienen in:

07.04.2023 | Original Paper

Detection of false data injection in smart grid using PCA based unsupervised learning

verfasst von: Richa Sharma, Amit M. Joshi, Chitrakant Sahu, Satyasai Jagannath Nanda

Erschienen in: Electrical Engineering | Ausgabe 4/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Advanced metering infrastructure (AMI) is one of the core aspects of the smart grid, and offers numerous possible benefits, such as load control and demand response. AMI enables two-way communication, but it is vulnerable to electricity theft. Due to the tempering of the smart meter, the abnormal pattern of fraud becomes difficult to detect, which introduces the increment of false data consumption. The majority of existing methods depend on factors such as predefined limits, extra information requirements, and the desire for labelled datasets. These factors are difficult to realize or have a poor degree of identification. This paper integrates two novel techniques to detect the False Data Injection attack. One is Principal Component Analysis, which is based on feature correlation, second is an unsupervised learning based technique Density-Based Spatial Clustering of Applications with Noise which helps to identify data patterns to detect outliers from a huge number of load profiles. The combination makes the proposed technique an appropriate tool for detecting an arbitrary pattern attack in high-dimensional data. Four different attack scenarios are analyzed on the Irish Science Data Archive smart meter data set. The efficacy of proposed theft detection method is evaluated by comparing the AUC, mAP, and time with those of other clustering approaches. The detection rate of the proposed scheme has been compared with the other approaches in the literature. The results demonstrate that the detection rate is substantially higher than that of other theft detection methods. Finally, the influence of varied abnormality ratios has been investigated.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Messinis GM, Hatziargyriou ND (2018) Review of non-technical loss detection methods. Electric Power Syst Res 158:250–266CrossRef Messinis GM, Hatziargyriou ND (2018) Review of non-technical loss detection methods. Electric Power Syst Res 158:250–266CrossRef
2.
Zurück zum Zitat Buzau MM, Tejedor-Aguilera J, Cruz-Romero P, Gómez-Expósito A (2018) Detection of non-technical losses using smart meter data and supervised learning. IEEE Trans Smart Grid 10(3):2661–2670CrossRef Buzau MM, Tejedor-Aguilera J, Cruz-Romero P, Gómez-Expósito A (2018) Detection of non-technical losses using smart meter data and supervised learning. IEEE Trans Smart Grid 10(3):2661–2670CrossRef
3.
Zurück zum Zitat Wang X, Ahn S-H (2020) Real-time prediction and anomaly detection of electrical load in a residential community. Appl Energy 259:114145CrossRef Wang X, Ahn S-H (2020) Real-time prediction and anomaly detection of electrical load in a residential community. Appl Energy 259:114145CrossRef
4.
Zurück zum Zitat Attia M, Senouci SM, Sedjelmaci H, Aglzim E-H, Chrenko D (2018) An efficient intrusion detection system against cyber-physical attacks in the smart grid. Comput Electric Eng 68:499–512CrossRef Attia M, Senouci SM, Sedjelmaci H, Aglzim E-H, Chrenko D (2018) An efficient intrusion detection system against cyber-physical attacks in the smart grid. Comput Electric Eng 68:499–512CrossRef
5.
Zurück zum Zitat Salmeron J, Wood K, Baldick R (2004) Analysis of electric grid security under terrorist threat. IEEE Trans Power Syst 19(2):905–912CrossRef Salmeron J, Wood K, Baldick R (2004) Analysis of electric grid security under terrorist threat. IEEE Trans Power Syst 19(2):905–912CrossRef
6.
Zurück zum Zitat Sharma S, Niazi KR, Verma K, Rawat T (2020) Impact of battery energy storage, controllable load and network reconfiguration on contemporary distribution network under uncertain environment. IET Gener Transm Distrib 14:4719–4727CrossRef Sharma S, Niazi KR, Verma K, Rawat T (2020) Impact of battery energy storage, controllable load and network reconfiguration on contemporary distribution network under uncertain environment. IET Gener Transm Distrib 14:4719–4727CrossRef
7.
Zurück zum Zitat Zheng K, Chen Q, Wang Y, Kang C, Xia Q (2018) A novel combined data-driven approach for electricity theft detection. IEEE Trans Industr Inf 15(3):1809–1819CrossRef Zheng K, Chen Q, Wang Y, Kang C, Xia Q (2018) A novel combined data-driven approach for electricity theft detection. IEEE Trans Industr Inf 15(3):1809–1819CrossRef
8.
Zurück zum Zitat Musleh AS, Chen G, Dong ZY (2019) A survey on the detection algorithms for false data injection attacks in smart grids. IEEE Trans Smart Grid 11(3):2218–2234CrossRef Musleh AS, Chen G, Dong ZY (2019) A survey on the detection algorithms for false data injection attacks in smart grids. IEEE Trans Smart Grid 11(3):2218–2234CrossRef
9.
Zurück zum Zitat Jain H, Kumar M, Joshi AM (2021) Intelligent energy cyber physical systems (IECPS) for reliable smart grid against energy theft and false data injection. Electric Eng 1–16 Jain H, Kumar M, Joshi AM (2021) Intelligent energy cyber physical systems (IECPS) for reliable smart grid against energy theft and false data injection. Electric Eng 1–16
10.
Zurück zum Zitat Antmann P (2009) Reducing technical and non-technical losses in the power sector. World Bank, Washington, DC Antmann P (2009) Reducing technical and non-technical losses in the power sector. World Bank, Washington, DC
11.
Zurück zum Zitat McDaniel P, McLaughlin S (2009) Security and privacy challenges in the smart grid. IEEE Secur Priv 7(3):75–77CrossRef McDaniel P, McLaughlin S (2009) Security and privacy challenges in the smart grid. IEEE Secur Priv 7(3):75–77CrossRef
12.
Zurück zum Zitat Jain S, Choksi KA, Pindoriya NM (2019) Rule-based classification of energy theft and anomalies in consumers load demand profile. IET Smart Grid 2(4):612–624CrossRef Jain S, Choksi KA, Pindoriya NM (2019) Rule-based classification of energy theft and anomalies in consumers load demand profile. IET Smart Grid 2(4):612–624CrossRef
13.
Zurück zum Zitat Neto EACA, Coelho J (2013) Probabilistic methodology for technical and non-technical losses estimation in distribution system. Electric Power Syst Res 97:93–99CrossRef Neto EACA, Coelho J (2013) Probabilistic methodology for technical and non-technical losses estimation in distribution system. Electric Power Syst Res 97:93–99CrossRef
14.
Zurück zum Zitat Leite JB, Mantovani JRS (2016) Detecting and locating non-technical losses in modern distribution networks. IEEE Trans Smart Grid 9(2):1023–1032CrossRef Leite JB, Mantovani JRS (2016) Detecting and locating non-technical losses in modern distribution networks. IEEE Trans Smart Grid 9(2):1023–1032CrossRef
15.
Zurück zum Zitat Lo C-H, Ansari N (2013) Consumer: A novel hybrid intrusion detection system for distribution networks in smart grid. IEEE Trans Emerg Top Comput 1(1):33–44CrossRef Lo C-H, Ansari N (2013) Consumer: A novel hybrid intrusion detection system for distribution networks in smart grid. IEEE Trans Emerg Top Comput 1(1):33–44CrossRef
16.
Zurück zum Zitat Xiao Z, Xiao Y, David DHC (2013) Non-repudiation in neighborhood area networks for smart grid. IEEE Commun Mag 51(1):18–26CrossRef Xiao Z, Xiao Y, David DHC (2013) Non-repudiation in neighborhood area networks for smart grid. IEEE Commun Mag 51(1):18–26CrossRef
17.
Zurück zum Zitat Khoo Benjamin, Cheng Ye (2011) Using RFID for anti-theft in a Chinese electrical supply company: a cost-benefit analysis. In: 2011 Wireless telecommunications symposium (WTS). IEEE, pp 1–6 Khoo Benjamin, Cheng Ye (2011) Using RFID for anti-theft in a Chinese electrical supply company: a cost-benefit analysis. In: 2011 Wireless telecommunications symposium (WTS). IEEE, pp 1–6
18.
Zurück zum Zitat Amin S, Schwartz GA, Cárdenas AA, Shankar Sastry S (2015) Game-theoretic models of electricity theft detection in smart utility networks: providing new capabilities with advanced metering infrastructure. IEEE Control Syst Mag 35(1):66-81MathSciNetCrossRefMATH Amin S, Schwartz GA, Cárdenas AA, Shankar Sastry S (2015) Game-theoretic models of electricity theft detection in smart utility networks: providing new capabilities with advanced metering infrastructure. IEEE Control Syst Mag 35(1):66-81MathSciNetCrossRefMATH
19.
Zurück zum Zitat Cárdenas AA, Amin S, Schwartz G, Dong R, Sastry S (2012) A game theory model for electricity theft detection and privacy-aware control in AMI systems. In: 2012 50th annual allerton conference on communication, control, and computing (Allerton). IEEE, pp 1830–1837 Cárdenas AA, Amin S, Schwartz G, Dong R, Sastry S (2012) A game theory model for electricity theft detection and privacy-aware control in AMI systems. In: 2012 50th annual allerton conference on communication, control, and computing (Allerton). IEEE, pp 1830–1837
20.
Zurück zum Zitat Angelos EWS, Saavedra OR, Cortés OAC, de Souza AN (2011) Detection and identification of abnormalities in customer consumptions in power distribution systems. IEEE Trans Power Deliv 26(4):2436–2442CrossRef Angelos EWS, Saavedra OR, Cortés OAC, de Souza AN (2011) Detection and identification of abnormalities in customer consumptions in power distribution systems. IEEE Trans Power Deliv 26(4):2436–2442CrossRef
21.
Zurück zum Zitat Depuru SSSR, Wang L, Devabhaktuni V, Nelapati P (2011) A hybrid neural network model and encoding technique for enhanced classification of energy consumption data. In: 2011 IEEE power and energy society general meeting. IEEE, pp 1–8 Depuru SSSR, Wang L, Devabhaktuni V, Nelapati P (2011) A hybrid neural network model and encoding technique for enhanced classification of energy consumption data. In: 2011 IEEE power and energy society general meeting. IEEE, pp 1–8
22.
Zurück zum Zitat Barbosa C, Vellasco M, Pacheco M, Tanscheit R, Carrilho J, Figueiredo Junior K, Rocha J (2006) A methodology for detection of irregularities and prevention commercial losses. In: XVII Nat. Seminar Electric Energy Distribution, Belo Horizonte, Brazil Barbosa C, Vellasco M, Pacheco M, Tanscheit R, Carrilho J, Figueiredo Junior K, Rocha J (2006) A methodology for detection of irregularities and prevention commercial losses. In: XVII Nat. Seminar Electric Energy Distribution, Belo Horizonte, Brazil
23.
Zurück zum Zitat Nagi J, Yap KS, Tiong SK, Ahmed SK, Mohamad M (2009) Nontechnical loss detection for metered customers in power utility using support vector machines. IEEE Trans Power Deliv 25(2):1162–1171CrossRef Nagi J, Yap KS, Tiong SK, Ahmed SK, Mohamad M (2009) Nontechnical loss detection for metered customers in power utility using support vector machines. IEEE Trans Power Deliv 25(2):1162–1171CrossRef
24.
Zurück zum Zitat Zheng K, Wang Y, Chen Q, Li Y (2017) Electricity theft detecting based on density-clustering method. In: 2017 IEEE innovative smart grid technologies-Asia (ISGT-Asia). IEEE, pp 1–6 Zheng K, Wang Y, Chen Q, Li Y (2017) Electricity theft detecting based on density-clustering method. In: 2017 IEEE innovative smart grid technologies-Asia (ISGT-Asia). IEEE, pp 1–6
25.
Zurück zum Zitat Jokar P, Arianpoo N, Leung VCM (2015) Electricity theft detection in AMI using customers’ consumption patterns. IEEE Trans Smart Grid 7(1):216–226CrossRef Jokar P, Arianpoo N, Leung VCM (2015) Electricity theft detection in AMI using customers’ consumption patterns. IEEE Trans Smart Grid 7(1):216–226CrossRef
26.
Zurück zum Zitat Zheng Z, Yang Y, Niu X, Dai H-N, Zhou Y (2017) Wide and deep convolutional neural networks for electricity-theft detection to secure smart grids. IEEE Trans Industr Inf 14(4):1606–1615CrossRef Zheng Z, Yang Y, Niu X, Dai H-N, Zhou Y (2017) Wide and deep convolutional neural networks for electricity-theft detection to secure smart grids. IEEE Trans Industr Inf 14(4):1606–1615CrossRef
27.
Zurück zum Zitat Han W, Xiao Y (2016) Combating TNTL: Non-technical loss fraud targeting time-based pricing in smart grid. In: International conference on cloud computing and security. Springer, pp 48–57 Han W, Xiao Y (2016) Combating TNTL: Non-technical loss fraud targeting time-based pricing in smart grid. In: International conference on cloud computing and security. Springer, pp 48–57
29.
Zurück zum Zitat Kokate P, Pancholi S, Joshi AM (2021) Classification of upper arm movements from EEG signals using machine learning with ICA analysis. arXiv:2107.08514 Kokate P, Pancholi S, Joshi AM (2021) Classification of upper arm movements from EEG signals using machine learning with ICA analysis. arXiv:​2107.​08514
30.
Zurück zum Zitat Han J, Pei J, Kamber M (2011) Data mining: concepts and techniques. Elsevier, AmsterdamMATH Han J, Pei J, Kamber M (2011) Data mining: concepts and techniques. Elsevier, AmsterdamMATH
31.
Zurück zum Zitat Yang X, Zhao P, Zhang X, Lin J, Wei Yu (2016) Toward a gaussian-mixture model-based detection scheme against data integrity attacks in the smart grid. IEEE Internet Things J 4(1):147–161 Yang X, Zhao P, Zhang X, Lin J, Wei Yu (2016) Toward a gaussian-mixture model-based detection scheme against data integrity attacks in the smart grid. IEEE Internet Things J 4(1):147–161
32.
Zurück zum Zitat Pancholi S, Jain P, Varghese A et al. (2019) A novel time-domain based feature for EMG-PR prosthetic and rehabilitation application. In: 2019 41st annual international conference of the IEEE engineering in medicine and biology society (EMBC). IEEE, pp 5084–5087 Pancholi S, Jain P, Varghese A et al. (2019) A novel time-domain based feature for EMG-PR prosthetic and rehabilitation application. In: 2019 41st annual international conference of the IEEE engineering in medicine and biology society (EMBC). IEEE, pp 5084–5087
33.
Zurück zum Zitat Nanda SJ, Panda G (2015) Design of computationally efficient density-based clustering algorithms. Data Knowl Eng 95:23–38CrossRef Nanda SJ, Panda G (2015) Design of computationally efficient density-based clustering algorithms. Data Knowl Eng 95:23–38CrossRef
34.
Zurück zum Zitat Nanda SJ, Panda G (2014) A survey on nature inspired metaheuristic algorithms for partitional clustering. Swarm Evol Comput 16:1–18 Nanda SJ, Panda G (2014) A survey on nature inspired metaheuristic algorithms for partitional clustering. Swarm Evol Comput 16:1–18
35.
Zurück zum Zitat Maulik U, Bandyopadhyay S (2002) Performance evaluation of some clustering algorithms and validity indices. IEEE Trans Pattern Anal Mach Intell 24(12):1650–1654 Maulik U, Bandyopadhyay S (2002) Performance evaluation of some clustering algorithms and validity indices. IEEE Trans Pattern Anal Mach Intell 24(12):1650–1654
36.
Zurück zum Zitat Mashima D, Cárdenas AA (2012) Evaluating electricity theft detectors in smart grid networks. In: International workshop on recent advances in intrusion detection. Springer, pp 210–229 Mashima D, Cárdenas AA (2012) Evaluating electricity theft detectors in smart grid networks. In: International workshop on recent advances in intrusion detection. Springer, pp 210–229
37.
Zurück zum Zitat Salinas S, Li M, Li P (2013) Privacy-preserving energy theft detection in smart grids: a P2P computing approach. IEEE J Sel Areas Commun 31(9):257–267CrossRef Salinas S, Li M, Li P (2013) Privacy-preserving energy theft detection in smart grids: a P2P computing approach. IEEE J Sel Areas Commun 31(9):257–267CrossRef
38.
Zurück zum Zitat Singh SK, Bose R, Joshi A (2018) Entropy-based electricity theft detection in AMI network. IET Cyber Phys Syst Theory Appl 3(2):99–105CrossRef Singh SK, Bose R, Joshi A (2018) Entropy-based electricity theft detection in AMI network. IET Cyber Phys Syst Theory Appl 3(2):99–105CrossRef
39.
Zurück zum Zitat Singh SK, Bose R, Joshi A (2018) Energy theft detection for AMI using principal component analysis based reconstructed data. IET Cyber Phys Syst Theory Appl Singh SK, Bose R, Joshi A (2018) Energy theft detection for AMI using principal component analysis based reconstructed data. IET Cyber Phys Syst Theory Appl
Metadaten
Titel
Detection of false data injection in smart grid using PCA based unsupervised learning
verfasst von
Richa Sharma
Amit M. Joshi
Chitrakant Sahu
Satyasai Jagannath Nanda
Publikationsdatum
07.04.2023
Verlag
Springer Berlin Heidelberg
Erschienen in
Electrical Engineering / Ausgabe 4/2023
Print ISSN: 0948-7921
Elektronische ISSN: 1432-0487
DOI
https://doi.org/10.1007/s00202-023-01809-3