Skip to main content
Erschienen in: Acta Mechanica 9/2020

25.06.2020 | Original Paper

Determination of active members and zero-stress states for symmetric prestressed cable–strut structures

verfasst von: Linzi Fan, Yue Sun, Weiyin Fan, Yao Chen, Jian Feng

Erschienen in: Acta Mechanica | Ausgabe 9/2020

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A prestressed cable–strut structure is generally flexible and exhibits strong coupling between its stress state and configuration. The zero-stress state offers the basis for design and analysis of cable–strut structures and has significant influence on the prestress state and the load state. Here, a computational method is proposed for seeking zero-stress states of symmetric cable–strut structures. By evaluating distributed static indeterminacy and symmetry representations using group theory, the active member with proper importance index and high-order symmetry is chosen from different types of members. Moreover, natural lengths and the involved elongations of the members are established from the initial prestresses and geometric properties. Then, based on the Newton method and the Moore–Penrose inverse theory, internal forces of the members are actively reduced. The structural configuration and tangent stiffness matrix are iteratively updated during the whole process from the prestress state to the zero-stress state. The feasibility and accuracy of the proposed approach are verified by some numerical examples, whereas the results are compared with analytical solutions and FEM simulation. The results show that one zero-stress configuration is associated with a specific prestress state, and the process between zero-stress state and prestress state is reversible. This work has theoretical significance for the design of novel cable–strut structures and provides a reference for the construction process of prestressed cable–strut structures in practical applications.
Literatur
1.
Zurück zum Zitat Wang, B.: Cable-strut systems: part II—cable-strut. J. Constr. Steel Res. 45, 291–299 (1998) Wang, B.: Cable-strut systems: part II—cable-strut. J. Constr. Steel Res. 45, 291–299 (1998)
2.
Zurück zum Zitat Adam, B., Smith, I.: Tensegrity active control: multiobjective approach. J. Comput. Civ. Eng. 21, 3–10 (2007) Adam, B., Smith, I.: Tensegrity active control: multiobjective approach. J. Comput. Civ. Eng. 21, 3–10 (2007)
3.
Zurück zum Zitat Kawaguchi, M., Tatemichi, I., Chen, P.S.: Optimum shapes of a cable dome structure. Eng. Struct. 21, 719–725 (1999) Kawaguchi, M., Tatemichi, I., Chen, P.S.: Optimum shapes of a cable dome structure. Eng. Struct. 21, 719–725 (1999)
4.
Zurück zum Zitat Tran, H.C., Lee, J.: Advanced form-finding for cable-strut structures. Int. J. Solids Struct. 47, 1785–1794 (2010)MATH Tran, H.C., Lee, J.: Advanced form-finding for cable-strut structures. Int. J. Solids Struct. 47, 1785–1794 (2010)MATH
5.
Zurück zum Zitat Montuori, R., Skelton, R.E.: Globally stable tensegrity compressive structures for arbitrary complexity. Compos. Struct. 179, 682–694 (2017) Montuori, R., Skelton, R.E.: Globally stable tensegrity compressive structures for arbitrary complexity. Compos. Struct. 179, 682–694 (2017)
6.
Zurück zum Zitat Motro, R.: Tensegrity: Latest and Future Developments. In: Tensegrity, pp. 189–217. Butterworth-Heinemann, Oxford (2003) Motro, R.: Tensegrity: Latest and Future Developments. In: Tensegrity, pp. 189–217. Butterworth-Heinemann, Oxford (2003)
7.
Zurück zum Zitat Geiger, D.H., Stefaniuk, A., Chen, D.: The design and construction of two cable domes for the Korean Olympics. In: Proceedings of the IASS Symposium on Shells, Membranes and Space Frames, pp. 265–272. Elsevier Science Publishers BV, Osaka (1986) Geiger, D.H., Stefaniuk, A., Chen, D.: The design and construction of two cable domes for the Korean Olympics. In: Proceedings of the IASS Symposium on Shells, Membranes and Space Frames, pp. 265–272. Elsevier Science Publishers BV, Osaka (1986)
8.
Zurück zum Zitat Levy, M.P., Jing, T.F.: Floating saddle connections for the Georgia Dome, USA. Struct. Eng. Int. 4, 148–150 (1994) Levy, M.P., Jing, T.F.: Floating saddle connections for the Georgia Dome, USA. Struct. Eng. Int. 4, 148–150 (1994)
9.
Zurück zum Zitat Quagliaroli, M., Malerba, P.G., Albertin, A., Pollini, N.: The role of prestress and its optimization in cable domes design. Comput. Struct. 161, 17–30 (2015) Quagliaroli, M., Malerba, P.G., Albertin, A., Pollini, N.: The role of prestress and its optimization in cable domes design. Comput. Struct. 161, 17–30 (2015)
10.
Zurück zum Zitat Fest, E., Shea, K., Domer, D., Smith, I.: Adjustable tensegrity structures. J. Struct. Eng. ASCE 129, 515–526 (2003) Fest, E., Shea, K., Domer, D., Smith, I.: Adjustable tensegrity structures. J. Struct. Eng. ASCE 129, 515–526 (2003)
11.
Zurück zum Zitat Veuve, N., Dalil Safaei, S., Smith, I.F.C.: Active control for mid-span connection of a deployable tensegrity footbridge. Eng. Struct. 112, 245–255 (2016) Veuve, N., Dalil Safaei, S., Smith, I.F.C.: Active control for mid-span connection of a deployable tensegrity footbridge. Eng. Struct. 112, 245–255 (2016)
12.
Zurück zum Zitat Zhang, P., Kawaguchi, K., Feng, J.: Prismatic tensegrity structures with additional cables: Integral symmetric states of self-stress and cable-controlled reconfiguration procedure. Int. J. Solids Struct. 51, 4294–4306 (2014) Zhang, P., Kawaguchi, K., Feng, J.: Prismatic tensegrity structures with additional cables: Integral symmetric states of self-stress and cable-controlled reconfiguration procedure. Int. J. Solids Struct. 51, 4294–4306 (2014)
13.
Zurück zum Zitat Chen, Y., Sun, Q., Feng, J.: Stiffness degradation of prestressed cable-strut structures observed from variations of lower frequencies. Acta Mech. 229, 3319–3332 (2018)MathSciNet Chen, Y., Sun, Q., Feng, J.: Stiffness degradation of prestressed cable-strut structures observed from variations of lower frequencies. Acta Mech. 229, 3319–3332 (2018)MathSciNet
14.
Zurück zum Zitat Gasparini, D., Klinka, K.K., Arcaro, V.F.: A finite element for form-finding and static analysis of tensegrity structures. J. Mech. Mater. Struct. 6, 1239–1253 (2011) Gasparini, D., Klinka, K.K., Arcaro, V.F.: A finite element for form-finding and static analysis of tensegrity structures. J. Mech. Mater. Struct. 6, 1239–1253 (2011)
15.
Zurück zum Zitat Zhang, J.Y., Ohsaki, M.: Adaptive force density method for form-finding problem of tensegrity structures. Int. J. Solids Struct. 43, 5658–5673 (2006)MATH Zhang, J.Y., Ohsaki, M.: Adaptive force density method for form-finding problem of tensegrity structures. Int. J. Solids Struct. 43, 5658–5673 (2006)MATH
16.
Zurück zum Zitat Lee, S., Lee, J.: Advanced automatic grouping for form-finding of tensegrity structures. Struct. Multidiscipl. Optim. 55, 959–968 (2017) Lee, S., Lee, J.: Advanced automatic grouping for form-finding of tensegrity structures. Struct. Multidiscipl. Optim. 55, 959–968 (2017)
17.
Zurück zum Zitat Juan, S.H., Mirats Tur, J.: Tensegrity frameworks: static analysis review. Mech. Mach. Theory 43, 859–881 (2008)MATH Juan, S.H., Mirats Tur, J.: Tensegrity frameworks: static analysis review. Mech. Mach. Theory 43, 859–881 (2008)MATH
18.
Zurück zum Zitat Masic, M., Skelton, R.E., Gill, P.E.: Algebraic tensegrity form-finding. Int. J. Solids Struct. 42, 4833–4858 (2005)MathSciNetMATH Masic, M., Skelton, R.E., Gill, P.E.: Algebraic tensegrity form-finding. Int. J. Solids Struct. 42, 4833–4858 (2005)MathSciNetMATH
19.
Zurück zum Zitat Estrada, G.G., Bungartz, H.J., Mohrdieck, C.: Numerical form-finding of tensegrity structures. Int. J. Solids Struct. 43, 6855–6868 (2006)MATH Estrada, G.G., Bungartz, H.J., Mohrdieck, C.: Numerical form-finding of tensegrity structures. Int. J. Solids Struct. 43, 6855–6868 (2006)MATH
20.
Zurück zum Zitat Miki, M., Adriaenssens, S., Igarashi, T., Kawaguchi, K.: The geodesic dynamic relaxation method for problems of equilibrium with equality constraint conditions. Int. J. Numer. Methods Eng. 99, 682–710 (2014)MathSciNetMATH Miki, M., Adriaenssens, S., Igarashi, T., Kawaguchi, K.: The geodesic dynamic relaxation method for problems of equilibrium with equality constraint conditions. Int. J. Numer. Methods Eng. 99, 682–710 (2014)MathSciNetMATH
21.
Zurück zum Zitat Koohestani, K., Guest, S.D.: A new approach to the analytical and numerical form-finding of tensegrity structures. Int. J. Solids Struct. 50, 2995–3007 (2013) Koohestani, K., Guest, S.D.: A new approach to the analytical and numerical form-finding of tensegrity structures. Int. J. Solids Struct. 50, 2995–3007 (2013)
22.
Zurück zum Zitat Feng, X.: The optimal initial self-stress design for tensegrity grid structures. Comput. Struct. 193, 21–30 (2017) Feng, X.: The optimal initial self-stress design for tensegrity grid structures. Comput. Struct. 193, 21–30 (2017)
23.
Zurück zum Zitat Connelly, R., Back, A.: Mathematics and Tensegrity: Group and representation theory make it possible to form a complete catalogue of ”strut-cable” constructions with prescribed symmetries. Am. Sci. 86, 142–151 (1998) Connelly, R., Back, A.: Mathematics and Tensegrity: Group and representation theory make it possible to form a complete catalogue of ”strut-cable” constructions with prescribed symmetries. Am. Sci. 86, 142–151 (1998)
24.
Zurück zum Zitat Zhang, J.Y., Ohsaki, M.: Self-equilibrium and stability of regular truncated tetrahedral tensegrity structures. J. Mech. Phys. Solids 60, 1757–1770 (2012)MathSciNetMATH Zhang, J.Y., Ohsaki, M.: Self-equilibrium and stability of regular truncated tetrahedral tensegrity structures. J. Mech. Phys. Solids 60, 1757–1770 (2012)MathSciNetMATH
25.
Zurück zum Zitat Chen, Y., Feng, J., Ma, R., Zhang, Y.: Efficient symmetry method for calculating integral prestress modes of statically indeterminate cable-strut structures. J. Struct. Eng. 141, 04014240 (2015) Chen, Y., Feng, J., Ma, R., Zhang, Y.: Efficient symmetry method for calculating integral prestress modes of statically indeterminate cable-strut structures. J. Struct. Eng. 141, 04014240 (2015)
26.
Zurück zum Zitat Chen, Y., Sun, Q., Feng, J.: Group-theoretical form-finding of cable-strut structures based on irreducible representations for rigid-body translations. Int. J. Mech. Sci. 144, 205–215 (2018) Chen, Y., Sun, Q., Feng, J.: Group-theoretical form-finding of cable-strut structures based on irreducible representations for rigid-body translations. Int. J. Mech. Sci. 144, 205–215 (2018)
27.
Zurück zum Zitat Kaveh, A., Bakhshpoori, T.: Metaheuristics: Outlines, MATLAB Codes and Examples. Springer, Switzerland (2019)MATH Kaveh, A., Bakhshpoori, T.: Metaheuristics: Outlines, MATLAB Codes and Examples. Springer, Switzerland (2019)MATH
28.
Zurück zum Zitat Rieffel, J., Valero-Cuevas, F., Lipson, H.: Automated discovery and optimization of large irregular tensegrity structures. Comput. Struct. 87, 368–379 (2009) Rieffel, J., Valero-Cuevas, F., Lipson, H.: Automated discovery and optimization of large irregular tensegrity structures. Comput. Struct. 87, 368–379 (2009)
29.
Zurück zum Zitat Lee, S., Woo, B.H., Lee, J.: Self-stress design of tensegrity grid structures using genetic algorithm. Int. J. Mech. Sci. 79, 38–46 (2014) Lee, S., Woo, B.H., Lee, J.: Self-stress design of tensegrity grid structures using genetic algorithm. Int. J. Mech. Sci. 79, 38–46 (2014)
30.
Zurück zum Zitat Li, Y., Feng, X.Q., Cao, Y.P., Gao, H.: A Monte Carlo form-finding method for large scale regular and irregular tensegrity structures. Int. J. Solids Struct. 47, 1888–1898 (2010)MATH Li, Y., Feng, X.Q., Cao, Y.P., Gao, H.: A Monte Carlo form-finding method for large scale regular and irregular tensegrity structures. Int. J. Solids Struct. 47, 1888–1898 (2010)MATH
31.
Zurück zum Zitat Xu, X., Wang, Y., Luo, Y.: Finding member connectivities and nodal positions of tensegrity structures based on force density method and mixed integer nonlinear programming. Eng. Struct. 166, 240–250 (2018) Xu, X., Wang, Y., Luo, Y.: Finding member connectivities and nodal positions of tensegrity structures based on force density method and mixed integer nonlinear programming. Eng. Struct. 166, 240–250 (2018)
32.
Zurück zum Zitat Koohestani, K.: Form-finding of tensegrity structures via genetic algorithm. Int. J. Solids Struct. 49, 739–747 (2012) Koohestani, K.: Form-finding of tensegrity structures via genetic algorithm. Int. J. Solids Struct. 49, 739–747 (2012)
33.
Zurück zum Zitat Chen, Y., Feng, J., Wu, Y.: Novel form-finding of tensegrity structures using ant colony systems. J. Mech. Robot. 4, 1283–1289 (2012) Chen, Y., Feng, J., Wu, Y.: Novel form-finding of tensegrity structures using ant colony systems. J. Mech. Robot. 4, 1283–1289 (2012)
34.
Zurück zum Zitat Shekastehband, B., Abedi, K., Dianat, N., Chenaghlou, M.R.: Experimental and numerical studies on the collapse behavior of tensegrity systems considering cable rupture and strut collapse with snap-through. Int J. Nonlinear Mech. 47, 751–768 (2012) Shekastehband, B., Abedi, K., Dianat, N., Chenaghlou, M.R.: Experimental and numerical studies on the collapse behavior of tensegrity systems considering cable rupture and strut collapse with snap-through. Int J. Nonlinear Mech. 47, 751–768 (2012)
35.
Zurück zum Zitat Zhao, J., Chen, W., Fu, G., Li, R.: Computation method of zero-stress state of pneumatic stressed membrane structure. Sci. China Technol. Sci. 55, 717–724 (2012) Zhao, J., Chen, W., Fu, G., Li, R.: Computation method of zero-stress state of pneumatic stressed membrane structure. Sci. China Technol. Sci. 55, 717–724 (2012)
36.
Zurück zum Zitat Chen, L., Dong, S.: Optimal prestress design and construction technique of cable-strut tension structures with multi-overall selfstress modes. Adv. Struct. Eng. 16, 1633–1644 (2013) Chen, L., Dong, S.: Optimal prestress design and construction technique of cable-strut tension structures with multi-overall selfstress modes. Adv. Struct. Eng. 16, 1633–1644 (2013)
37.
Zurück zum Zitat Chen, Y., Yan, J., Feng, J.: Stiffness contributions of tension structures evaluated from the levels of components and symmetry subspaces. Mech. Res. Commun. 100, 103401 (2019) Chen, Y., Yan, J., Feng, J.: Stiffness contributions of tension structures evaluated from the levels of components and symmetry subspaces. Mech. Res. Commun. 100, 103401 (2019)
38.
Zurück zum Zitat Tran, H.C., Park, H.S., Lee, J.: A unique feasible mode of prestress design for cable domes. Finite Elem. Anal. Des. 59, 44–54 (2012) Tran, H.C., Park, H.S., Lee, J.: A unique feasible mode of prestress design for cable domes. Finite Elem. Anal. Des. 59, 44–54 (2012)
39.
Zurück zum Zitat Xi, Y., Xi, Z., Qin, W.H.: Form-finding of cable domes by simplified force density method. Proceedings of the Institution of Civil Engineers - Structures and Buildings 164, 181–195 (2011) Xi, Y., Xi, Z., Qin, W.H.: Form-finding of cable domes by simplified force density method. Proceedings of the Institution of Civil Engineers - Structures and Buildings 164, 181–195 (2011)
40.
Zurück zum Zitat Chen, Y., Yan, J., Sareh, P., Feng, J.: Feasible prestress modes for cable-strut structures with multiple self-stress states using particle swarm optimization. J. Comput. Civ. Eng. 04020003 (2020) Chen, Y., Yan, J., Sareh, P., Feng, J.: Feasible prestress modes for cable-strut structures with multiple self-stress states using particle swarm optimization. J. Comput. Civ. Eng. 04020003 (2020)
41.
Zurück zum Zitat Amendola, A., Carpentieri, G., de Oliveira, M., Skelton, R.E., Fraternali, F.: Experimental investigation of the softening–stiffening response of tensegrity prisms under compressive loading. Compos. Struct. 117, 234–243 (2014) Amendola, A., Carpentieri, G., de Oliveira, M., Skelton, R.E., Fraternali, F.: Experimental investigation of the softening–stiffening response of tensegrity prisms under compressive loading. Compos. Struct. 117, 234–243 (2014)
42.
Zurück zum Zitat Koohestani, K., Kaveh, A.: Efficient buckling and free vibration analysis of cyclically repeated space truss structures. Finite Elem. Anal. Des. 46, 943–948 (2010) Koohestani, K., Kaveh, A.: Efficient buckling and free vibration analysis of cyclically repeated space truss structures. Finite Elem. Anal. Des. 46, 943–948 (2010)
43.
Zurück zum Zitat Bel Hadj Ali, N., Rhode-Barbarigos, L., Smith, I.F.C.: Analysis of clustered tensegrity structures using a modified dynamic relaxation algorithm. Int. J. Solids Struct. 48, 637–647 (2011)MATH Bel Hadj Ali, N., Rhode-Barbarigos, L., Smith, I.F.C.: Analysis of clustered tensegrity structures using a modified dynamic relaxation algorithm. Int. J. Solids Struct. 48, 637–647 (2011)MATH
44.
Zurück zum Zitat Koohestani, K.: On the analytical form-finding of tensegrities. Compos. Struct. 166, 114–119 (2017) Koohestani, K.: On the analytical form-finding of tensegrities. Compos. Struct. 166, 114–119 (2017)
45.
Zurück zum Zitat Zhang, J.Y., Ohsaki, M.: Force identification of prestressed pin-jointed structures. Comput. Struct. 89, 2361–2368 (2011) Zhang, J.Y., Ohsaki, M.: Force identification of prestressed pin-jointed structures. Comput. Struct. 89, 2361–2368 (2011)
46.
Zurück zum Zitat Pellegrino, S., Kwan, A., Vanheerden, T.F.: Reduction of equilibrium, compatibility and flexibility matrices, in the force method. Int. J. Numer. Methods Eng. 35, 1219–1236 (1992)MATH Pellegrino, S., Kwan, A., Vanheerden, T.F.: Reduction of equilibrium, compatibility and flexibility matrices, in the force method. Int. J. Numer. Methods Eng. 35, 1219–1236 (1992)MATH
47.
Zurück zum Zitat Kovacs, F., Tarnai, T.: Two-dimensional analysis of bar-and-joint assemblies on a sphere: equilibrium, compatibility and stiffness. Int. J. Solids Struct. 46, 1317–1325 (2009)MathSciNetMATH Kovacs, F., Tarnai, T.: Two-dimensional analysis of bar-and-joint assemblies on a sphere: equilibrium, compatibility and stiffness. Int. J. Solids Struct. 46, 1317–1325 (2009)MathSciNetMATH
48.
Zurück zum Zitat Zhang, P., Feng, J.: Initial prestress design and optimization of tensegrity systems based on symmetry and stiffness. Int. J. Solids Struct. 106, 68–90 (2017) Zhang, P., Feng, J.: Initial prestress design and optimization of tensegrity systems based on symmetry and stiffness. Int. J. Solids Struct. 106, 68–90 (2017)
49.
Zurück zum Zitat Chen, Y., Feng, J.: Generalized eigenvalue analysis of symmetric prestressed structures using group theory. J. Comput. Civ. Eng. 26, 488–497 (2012) Chen, Y., Feng, J.: Generalized eigenvalue analysis of symmetric prestressed structures using group theory. J. Comput. Civ. Eng. 26, 488–497 (2012)
50.
Zurück zum Zitat Chen, Y., Feng, J.: Efficient method for Moore–Penrose inverse problems involving symmetric structures based on group theory. J. Comput. Civ. Eng. 28, 182–190 (2014)MathSciNet Chen, Y., Feng, J.: Efficient method for Moore–Penrose inverse problems involving symmetric structures based on group theory. J. Comput. Civ. Eng. 28, 182–190 (2014)MathSciNet
51.
Zurück zum Zitat Fowler, P.W., Guest, S.D.: A symmetry extension of Maxwell’s rule for rigidity of frames. Int. J. Solids Struct. 37, 1793–1804 (2000)MathSciNetMATH Fowler, P.W., Guest, S.D.: A symmetry extension of Maxwell’s rule for rigidity of frames. Int. J. Solids Struct. 37, 1793–1804 (2000)MathSciNetMATH
52.
Zurück zum Zitat Chen, Y., Feng, J., Liu, Y.: A group-theoretic approach to the mobility and kinematic of symmetric over-constrained structures. Mech. Mach. Theory 105, 91–107 (2016) Chen, Y., Feng, J., Liu, Y.: A group-theoretic approach to the mobility and kinematic of symmetric over-constrained structures. Mech. Mach. Theory 105, 91–107 (2016)
53.
Zurück zum Zitat Chen, Y., Sareh, P., Feng, J., Sun, Q.: A computational method for automated detection of engineering structures with cyclic symmetries. Comput. Struct. 191, 153–164 (2017) Chen, Y., Sareh, P., Feng, J., Sun, Q.: A computational method for automated detection of engineering structures with cyclic symmetries. Comput. Struct. 191, 153–164 (2017)
54.
Zurück zum Zitat Zingoni, A.: Symmetry recognition in group-theoretic computational schemes for complex structural systems. Comput. Struct. 94–95, 34–44 (2012) Zingoni, A.: Symmetry recognition in group-theoretic computational schemes for complex structural systems. Comput. Struct. 94–95, 34–44 (2012)
55.
Zurück zum Zitat Chen, Y., Feng, J., Lv, H., Sun, Q.: Symmetry representations and elastic redundancy for members of tensegrity structures. Compos. Struct. 203, 672–680 (2018) Chen, Y., Feng, J., Lv, H., Sun, Q.: Symmetry representations and elastic redundancy for members of tensegrity structures. Compos. Struct. 203, 672–680 (2018)
56.
Zurück zum Zitat Chen, Y., Sareh, P., Feng, J.: Effective insights into the geometric stability of symmetric skeletal structures under symmetric variations. Int. J. Solids Struct. 69–70, 277–290 (2015) Chen, Y., Sareh, P., Feng, J.: Effective insights into the geometric stability of symmetric skeletal structures under symmetric variations. Int. J. Solids Struct. 69–70, 277–290 (2015)
58.
Zurück zum Zitat Sareh, P., Guest, S.D.: A framework for the symmetric generalisation of the Miura-ori. Int. J. Space Struct. 30, 141–152 (2015) Sareh, P., Guest, S.D.: A framework for the symmetric generalisation of the Miura-ori. Int. J. Space Struct. 30, 141–152 (2015)
59.
Zurück zum Zitat Chen, Y., Feng, J., Sun, Q.: Lower-order symmetric mechanism modes and bifurcation behavior of deployable bar structures with cyclic symmetry. Int. J. Solids Struct. 139–140, 1–14 (2018) Chen, Y., Feng, J., Sun, Q.: Lower-order symmetric mechanism modes and bifurcation behavior of deployable bar structures with cyclic symmetry. Int. J. Solids Struct. 139–140, 1–14 (2018)
60.
Zurück zum Zitat Eriksson, A., Tibert, A.G.: Redundant and force-differentiated systems in engineering and nature. Comput. Methods Appl. Mech. Eng. 195, 5437–5453 (2006)MATH Eriksson, A., Tibert, A.G.: Redundant and force-differentiated systems in engineering and nature. Comput. Methods Appl. Mech. Eng. 195, 5437–5453 (2006)MATH
61.
Zurück zum Zitat Chen, Y., Yan, J., Feng, J., Sareh, P.: A hybrid symmetry-PSO approach to finding the self-equilibrium configurations of prestressable pin-jointed assemblies. Acta Mech. 231, 1485–1501 (2020) Chen, Y., Yan, J., Feng, J., Sareh, P.: A hybrid symmetry-PSO approach to finding the self-equilibrium configurations of prestressable pin-jointed assemblies. Acta Mech. 231, 1485–1501 (2020)
Metadaten
Titel
Determination of active members and zero-stress states for symmetric prestressed cable–strut structures
verfasst von
Linzi Fan
Yue Sun
Weiyin Fan
Yao Chen
Jian Feng
Publikationsdatum
25.06.2020
Verlag
Springer Vienna
Erschienen in
Acta Mechanica / Ausgabe 9/2020
Print ISSN: 0001-5970
Elektronische ISSN: 1619-6937
DOI
https://doi.org/10.1007/s00707-020-02741-4

Weitere Artikel der Ausgabe 9/2020

Acta Mechanica 9/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.