Skip to main content
Erschienen in: Cellulose 8/2019

19.04.2019 | Original Research

Determination of cross-sectional area of natural plant fibres and fibre failure analysis by in situ SEM observation during microtensile tests

verfasst von: Hangbo Yue, Juan C. Rubalcaba, Yingde Cui, Juan P. Fernández-Blázquez, Chufen Yang, Peter S. Shuttleworth

Erschienen in: Cellulose | Ausgabe 8/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Reported tensile mechanical properties of many natural plant fibres vary to a large extent due to very often inappropriate measurement of the fibre’s cross-sectional area by diameter estimation. Using natural ramie filament as a model testing elementary fibre, a more realistic stereological determination is presented, including microscopic imaging analysis of the fibres’ cross-sectional area. When applying the area data using this approach to calculate tensile strength, a far narrower variation in the fibres’ strength distribution according to Weibull analysis was found. The gauge length effects on the mechanical performance of the natural fibre were revealed and analysed. In addition, in situ SEM observations during microtensile measurements detected real time changes in the fibres’ structure during stress. It was found that fibre failure was mainly caused by macroscopic physical defects and associated microscopic slippage of the microfibrils. Furthermore, results of cyclic tensile tests indicated that the fibre underwent elastic deformations under progressive loading–unloading cycles, which is due to bonding restriction that the surrounding matrix presents against the slippage of the microfibrils and reorganisation of hydrogen bonds.

Graphical abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Andersons J, Spārniņš E, Joffe R, Wallström L (2005) Strength distribution of elementary flax fibres. Compos Sci Technol 65:693–702CrossRef Andersons J, Spārniņš E, Joffe R, Wallström L (2005) Strength distribution of elementary flax fibres. Compos Sci Technol 65:693–702CrossRef
Zurück zum Zitat Andersons J, Poriķe E, Spārniņš E (2009) The effect of mechanical defects on the strength distribution of elementary flax fibres. Compos Sci Technol 69:2152–2157CrossRef Andersons J, Poriķe E, Spārniņš E (2009) The effect of mechanical defects on the strength distribution of elementary flax fibres. Compos Sci Technol 69:2152–2157CrossRef
Zurück zum Zitat Andersons J, Poriķe E, Spārniņš E (2011) Modeling strength scatter of elementary flax fibers: the effect of mechanical damage and geometrical characteristics. Compos Part A 42:543–549CrossRef Andersons J, Poriķe E, Spārniņš E (2011) Modeling strength scatter of elementary flax fibers: the effect of mechanical damage and geometrical characteristics. Compos Part A 42:543–549CrossRef
Zurück zum Zitat Azizi Samir MAS, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromol 6:612–626CrossRef Azizi Samir MAS, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromol 6:612–626CrossRef
Zurück zum Zitat Baley C (2002) Analysis of the flax fibres tensile behaviour and analysis of the tensile stiffness increase. Compos A 33:939–948CrossRef Baley C (2002) Analysis of the flax fibres tensile behaviour and analysis of the tensile stiffness increase. Compos A 33:939–948CrossRef
Zurück zum Zitat Banky EC, Slen SB (1956) Dimensional changes and related phenomena in wool fibers under stress. Text Res J 26:204–210CrossRef Banky EC, Slen SB (1956) Dimensional changes and related phenomena in wool fibers under stress. Text Res J 26:204–210CrossRef
Zurück zum Zitat Bledzki AK, Gassan J (1999) Composites reinforced with cellulose based fibres. Prog Polym Sci 24:221–274CrossRef Bledzki AK, Gassan J (1999) Composites reinforced with cellulose based fibres. Prog Polym Sci 24:221–274CrossRef
Zurück zum Zitat Bos H, Van Den Oever M, Peters O (2002) Tensile and compressive properties of flax fibres for natural fibre reinforced composites. J Mater Sci 37:1683–1692CrossRef Bos H, Van Den Oever M, Peters O (2002) Tensile and compressive properties of flax fibres for natural fibre reinforced composites. J Mater Sci 37:1683–1692CrossRef
Zurück zum Zitat Bourmaud A et al (2017) Exploring the mechanical performance and in-planta architecture of secondary hemp fibres. Ind Crops Prod 108:1–5CrossRef Bourmaud A et al (2017) Exploring the mechanical performance and in-planta architecture of secondary hemp fibres. Ind Crops Prod 108:1–5CrossRef
Zurück zum Zitat d’Almeida JRM, Mauricio MHP, Paciornik S (2012) Evaluation of the cross-section of lignocellulosic fibers using digital microscopy and image analysis. J Compos Mater 46:3057–3065CrossRef d’Almeida JRM, Mauricio MHP, Paciornik S (2012) Evaluation of the cross-section of lignocellulosic fibers using digital microscopy and image analysis. J Compos Mater 46:3057–3065CrossRef
Zurück zum Zitat Del Masto A, Trivaudey F, Guicheret-Retel V, Placet V, Boubakar L (2017) Nonlinear tensile behaviour of elementary hemp fibres: a numerical investigation of the relationships between 3D geometry and tensile behaviour. J Mater Sci 52:6591–6610CrossRef Del Masto A, Trivaudey F, Guicheret-Retel V, Placet V, Boubakar L (2017) Nonlinear tensile behaviour of elementary hemp fibres: a numerical investigation of the relationships between 3D geometry and tensile behaviour. J Mater Sci 52:6591–6610CrossRef
Zurück zum Zitat Dijon G (2002) A study of the structure and the mechanical properties of flax as reinforcing fibre for composites. Imperial College of Science, Technology and Medicine, University of London, London Dijon G (2002) A study of the structure and the mechanical properties of flax as reinforcing fibre for composites. Imperial College of Science, Technology and Medicine, University of London, London
Zurück zum Zitat Edwards HGM, Farwell DW, Webster D (1997) FT Raman microscopy of untreated natural plant fibres. Spectrochim Acta, Part A 53:2383–2392CrossRef Edwards HGM, Farwell DW, Webster D (1997) FT Raman microscopy of untreated natural plant fibres. Spectrochim Acta, Part A 53:2383–2392CrossRef
Zurück zum Zitat Eichhorn SJ, Young RJ (2003) Deformation micromechanics of natural cellulose fibre networks and composites. Compos Sci Technol 63:1225–1230CrossRef Eichhorn SJ, Young RJ (2003) Deformation micromechanics of natural cellulose fibre networks and composites. Compos Sci Technol 63:1225–1230CrossRef
Zurück zum Zitat Eichhorn S et al (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45:1–33CrossRef Eichhorn S et al (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45:1–33CrossRef
Zurück zum Zitat Elices M, Llorca J (2002) Fiber fracture. Elsevier, Amsterdam Elices M, Llorca J (2002) Fiber fracture. Elsevier, Amsterdam
Zurück zum Zitat Faruk O, Bledzki AK, Fink H-P, Sain M (2012) Biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci 37:1552–1596CrossRef Faruk O, Bledzki AK, Fink H-P, Sain M (2012) Biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci 37:1552–1596CrossRef
Zurück zum Zitat French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896CrossRef French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896CrossRef
Zurück zum Zitat French AD, Kim HJ (2018) Cotton fiber structure. In: Fang D (ed) Cotton fiber: physics, chemistry and biology. Springer, Berlin, pp 13–39CrossRef French AD, Kim HJ (2018) Cotton fiber structure. In: Fang D (ed) Cotton fiber: physics, chemistry and biology. Springer, Berlin, pp 13–39CrossRef
Zurück zum Zitat Gassan J, Chate A, Bledzki AK (2001) Calculation of elastic properties of natural fibers. J Mater Sci 36:3715–3720CrossRef Gassan J, Chate A, Bledzki AK (2001) Calculation of elastic properties of natural fibers. J Mater Sci 36:3715–3720CrossRef
Zurück zum Zitat Goda K, Sreekala MS, Gomes A, Kaji T, Ohgi J (2006) Improvement of plant based natural fibers for toughening green composites—Effect of load application during mercerization of ramie fibers. Compos Part A 37:2213–2220CrossRef Goda K, Sreekala MS, Gomes A, Kaji T, Ohgi J (2006) Improvement of plant based natural fibers for toughening green composites—Effect of load application during mercerization of ramie fibers. Compos Part A 37:2213–2220CrossRef
Zurück zum Zitat Hänninen T, Thygesen A, Mehmood S, Madsen B, Hughes M (2012) Mechanical processing of bast fibres: the occurrence of damage and its effect on fibre structure. Ind Crops Prod 39:7–11CrossRef Hänninen T, Thygesen A, Mehmood S, Madsen B, Hughes M (2012) Mechanical processing of bast fibres: the occurrence of damage and its effect on fibre structure. Ind Crops Prod 39:7–11CrossRef
Zurück zum Zitat Himmelsbach DS, Akin DE (1998) Near-infrared fourier-transform raman spectroscopy of flax (Linum usitatissimum L.) stems. J Agric Food Chem 46:991–998CrossRef Himmelsbach DS, Akin DE (1998) Near-infrared fourier-transform raman spectroscopy of flax (Linum usitatissimum L.) stems. J Agric Food Chem 46:991–998CrossRef
Zurück zum Zitat Hughes M (2012) Defects in natural fibres: their origin, characteristics and implications for natural fibre-reinforced composites. J Mater Sci 47:599–609CrossRef Hughes M (2012) Defects in natural fibres: their origin, characteristics and implications for natural fibre-reinforced composites. J Mater Sci 47:599–609CrossRef
Zurück zum Zitat Ilvessalo-Pfäffli M-S (1995) Fiber atlas: identification of papermaking fibers. Springer, BerlinCrossRef Ilvessalo-Pfäffli M-S (1995) Fiber atlas: identification of papermaking fibers. Springer, BerlinCrossRef
Zurück zum Zitat Jähn A, Schröder MW, Füting M, Schenzel K, Diepenbrock W (2002) Characterization of alkali treated flax fibres by means of FT Raman spectroscopy and environmental scanning electron microscopy. Spectrochim Acta, Part A 58:2271–2279CrossRef Jähn A, Schröder MW, Füting M, Schenzel K, Diepenbrock W (2002) Characterization of alkali treated flax fibres by means of FT Raman spectroscopy and environmental scanning electron microscopy. Spectrochim Acta, Part A 58:2271–2279CrossRef
Zurück zum Zitat Kalia S, Kaith BS, Kaur I (2011) Cellulose fibers: bio- and nano-polymer composites. Springer, BerlinCrossRef Kalia S, Kaith BS, Kaur I (2011) Cellulose fibers: bio- and nano-polymer composites. Springer, BerlinCrossRef
Zurück zum Zitat Kelly SP, Sensenig A, Lorentz KA, Blackledge TA (2011) Damping capacity is evolutionarily conserved in the radial silk of orb-weaving spiders. Zoology 114:233–238CrossRefPubMed Kelly SP, Sensenig A, Lorentz KA, Blackledge TA (2011) Damping capacity is evolutionarily conserved in the radial silk of orb-weaving spiders. Zoology 114:233–238CrossRefPubMed
Zurück zum Zitat Le Cam JB, Huneau B, Verron E, Gornet L (2004) Mechanism of fatigue crack growth in carbon black filled natural rubber. Macromolecules 37:5011–5017CrossRef Le Cam JB, Huneau B, Verron E, Gornet L (2004) Mechanism of fatigue crack growth in carbon black filled natural rubber. Macromolecules 37:5011–5017CrossRef
Zurück zum Zitat Lefeuvre A, Bourmaud A, Lebrun L, Morvan C, Baley C (2013) A study of the yearly reproducibility of flax fiber tensile properties. Ind Crops Prod 50:400–407CrossRef Lefeuvre A, Bourmaud A, Lebrun L, Morvan C, Baley C (2013) A study of the yearly reproducibility of flax fiber tensile properties. Ind Crops Prod 50:400–407CrossRef
Zurück zum Zitat Lefeuvre A, Bourmaud A, Morvan C, Baley C (2014) Elementary flax fibre tensile properties: correlation between stress–strain behaviour and fibre composition. Ind Crops Prod 52:762–769CrossRef Lefeuvre A, Bourmaud A, Morvan C, Baley C (2014) Elementary flax fibre tensile properties: correlation between stress–strain behaviour and fibre composition. Ind Crops Prod 52:762–769CrossRef
Zurück zum Zitat Lewin M (2006) Handbook of fiber chemistry. International fiber science and technology. CRC Press, Boca RatonCrossRef Lewin M (2006) Handbook of fiber chemistry. International fiber science and technology. CRC Press, Boca RatonCrossRef
Zurück zum Zitat Lewin M (2007) Handbook of fiber chemistry. CRC, Boca Raton Lewin M (2007) Handbook of fiber chemistry. CRC, Boca Raton
Zurück zum Zitat Li Y, Mai Y-W, Ye L (2000) Sisal fibre and its composites: a review of recent developments. Compos Sci Technol 60:2037–2055CrossRef Li Y, Mai Y-W, Ye L (2000) Sisal fibre and its composites: a review of recent developments. Compos Sci Technol 60:2037–2055CrossRef
Zurück zum Zitat Liu M, Fernando D, Daniel G, Madsen B, Meyer AS, Ale MT, Thygesen A (2015) Effect of harvest time and field retting duration on the chemical composition, morphology and mechanical properties of hemp fibers. Ind Crops Prod 69:29–39CrossRef Liu M, Fernando D, Daniel G, Madsen B, Meyer AS, Ale MT, Thygesen A (2015) Effect of harvest time and field retting duration on the chemical composition, morphology and mechanical properties of hemp fibers. Ind Crops Prod 69:29–39CrossRef
Zurück zum Zitat Mohanty AK, Misra M, Drzal LT (2005) Natural fibers, biopolymers, and biocomposites. Taylor & Francis Group, LondonCrossRef Mohanty AK, Misra M, Drzal LT (2005) Natural fibers, biopolymers, and biocomposites. Taylor & Francis Group, LondonCrossRef
Zurück zum Zitat Pickering KL, Abdalla A, Ji C, McDonald AG, Franich RA (2003) The effect of silane coupling agents on radiata pine fibre for use in thermoplastic matrix composites. Compos Part A 34:915–926CrossRef Pickering KL, Abdalla A, Ji C, McDonald AG, Franich RA (2003) The effect of silane coupling agents on radiata pine fibre for use in thermoplastic matrix composites. Compos Part A 34:915–926CrossRef
Zurück zum Zitat Rong MZ, Zhang MQ, Liu Y, Yang GC, Zeng HM (2001) The effect of fiber treatment on the mechanical properties of unidirectional sisal-reinforced epoxy composites. Compos Sci Technol 61:1437–1447CrossRef Rong MZ, Zhang MQ, Liu Y, Yang GC, Zeng HM (2001) The effect of fiber treatment on the mechanical properties of unidirectional sisal-reinforced epoxy composites. Compos Sci Technol 61:1437–1447CrossRef
Zurück zum Zitat Ščudla J, Raab M, Eichhorn KJ, Strachota A (2003) Formation and transformation of hierarchical structure of β-nucleated polypropylene characterized by X-ray diffraction, differential scanning calorimetry and scanning electron microscopy. Polymer 44:4655–4664CrossRef Ščudla J, Raab M, Eichhorn KJ, Strachota A (2003) Formation and transformation of hierarchical structure of β-nucleated polypropylene characterized by X-ray diffraction, differential scanning calorimetry and scanning electron microscopy. Polymer 44:4655–4664CrossRef
Zurück zum Zitat Shahid M, Mohammad F, Chen G, Tang R-C, Xing T (2016) Enzymatic processing of natural fibres: white biotechnology for sustainable development. Green Chem 18:2256–2281CrossRef Shahid M, Mohammad F, Chen G, Tang R-C, Xing T (2016) Enzymatic processing of natural fibres: white biotechnology for sustainable development. Green Chem 18:2256–2281CrossRef
Zurück zum Zitat Spārniņš E, Andersons J (2009) Diameter variability and strength scatter of elementary flax fibers. J Mater Sci 44:5697–5699CrossRef Spārniņš E, Andersons J (2009) Diameter variability and strength scatter of elementary flax fibers. J Mater Sci 44:5697–5699CrossRef
Zurück zum Zitat Thamae T, Baillie C (2007) Influence of fibre extraction method, alkali and silane treatment on the interface of Agave americana waste HDPE composites as possible roof ceilings in Lesotho. Compos Interfaces 14:821–836CrossRef Thamae T, Baillie C (2007) Influence of fibre extraction method, alkali and silane treatment on the interface of Agave americana waste HDPE composites as possible roof ceilings in Lesotho. Compos Interfaces 14:821–836CrossRef
Zurück zum Zitat Thomason JL, Carruthers J (2012) Natural fibre cross sectional area, its variability and effects on the determination of fibre properties. J Biobased Mater Bioenergy 6:424–430CrossRef Thomason JL, Carruthers J (2012) Natural fibre cross sectional area, its variability and effects on the determination of fibre properties. J Biobased Mater Bioenergy 6:424–430CrossRef
Zurück zum Zitat Truss RW (2011) Natural fibers for biocomposites. MRS Bull 36:711–715CrossRef Truss RW (2011) Natural fibers for biocomposites. MRS Bull 36:711–715CrossRef
Zurück zum Zitat Vincent JFV (2000) A unified nomenclature for plant fibres for industrial use. Appl Compos Mater 7:269–271CrossRef Vincent JFV (2000) A unified nomenclature for plant fibres for industrial use. Appl Compos Mater 7:269–271CrossRef
Zurück zum Zitat Vuure AV (2008) Natural fibre composites: recent developments. KU Leuven, Leuven Vuure AV (2008) Natural fibre composites: recent developments. KU Leuven, Leuven
Zurück zum Zitat Wambua P, Ivens J, Verpoest I (2003) Natural fibres: can they replace glass in fibre reinforced plastics? Compos Sci Technol 63:1259–1264CrossRef Wambua P, Ivens J, Verpoest I (2003) Natural fibres: can they replace glass in fibre reinforced plastics? Compos Sci Technol 63:1259–1264CrossRef
Zurück zum Zitat Weibull W (1951) A statistical distribution function of wide applicability. J Appl Mech 18:293–305 Weibull W (1951) A statistical distribution function of wide applicability. J Appl Mech 18:293–305
Zurück zum Zitat Wu Y et al (2017) Bioinspired supramolecular fibers drawn from a multiphase self-assembled hydrogel. Proc Natl Acad Sci USA 114:8163–8168CrossRefPubMed Wu Y et al (2017) Bioinspired supramolecular fibers drawn from a multiphase self-assembled hydrogel. Proc Natl Acad Sci USA 114:8163–8168CrossRefPubMed
Zurück zum Zitat Young RA (2000) Fibers, vegetable. In: Suslick KS (ed) Kirk-othmer encyclopedia of chemical technology. Wiley, Hoboken Young RA (2000) Fibers, vegetable. In: Suslick KS (ed) Kirk-othmer encyclopedia of chemical technology. Wiley, Hoboken
Zurück zum Zitat Zhang Y, Wang X, Pan N, Postle R (2002) Weibull analysis of the tensile behavior of fibers with geometrical irregularities. J Mater Sci 37:1401–1406CrossRef Zhang Y, Wang X, Pan N, Postle R (2002) Weibull analysis of the tensile behavior of fibers with geometrical irregularities. J Mater Sci 37:1401–1406CrossRef
Zurück zum Zitat Zhang H et al (2012) Nanocavitation in carbon black filled styrene–butadiene rubber under tension detected by real time small angle X-ray scattering. Macromolecules 45:1529–1543CrossRef Zhang H et al (2012) Nanocavitation in carbon black filled styrene–butadiene rubber under tension detected by real time small angle X-ray scattering. Macromolecules 45:1529–1543CrossRef
Metadaten
Titel
Determination of cross-sectional area of natural plant fibres and fibre failure analysis by in situ SEM observation during microtensile tests
verfasst von
Hangbo Yue
Juan C. Rubalcaba
Yingde Cui
Juan P. Fernández-Blázquez
Chufen Yang
Peter S. Shuttleworth
Publikationsdatum
19.04.2019
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 8/2019
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-019-02428-7

Weitere Artikel der Ausgabe 8/2019

Cellulose 8/2019 Zur Ausgabe