Skip to main content
Erschienen in:

03.07.2021

Determination of Geometric and Operating Parameters of Device for Spraying Molten Slag in a Dry Slag Granulation Plant

verfasst von: S. V. Lukin, N. I. Shestakov, E. M. Il’icheva, A. V. Fokin

Erschienen in: Metallurgist | Ausgabe 3-4/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In leading countries around the world, research is being conducted on the development of dry slag granulation plants (DSGPs) for blast-furnace slag; these plants support production of dry granulated slag and recovery of physical heat from slag. The design and construction of laboratory or pilot dry granulation plants requires engineering techniques that can be used to design the major components of the plant. The most important component of a dry slag granulation plant is a horizontally rotating device (disk) for spraying slag (a disk), with the molten slag being fed onto this disk. As the slag interacts with the disk, the slag is atomized into drops with a diameter of 1–2 mm that move radially at a speed of 5–15 m/sex through the interior of the granulation chamber, where they undergo radiant and convective heat exchange, and solidify before they come into contact with the cylindrical wall of the chamber. Knowing the maximum diameter d of the molten slag droplets and the speed w at which they move through the granulation chamber, it is possible to estimate the geometric and operating parameters of the spraying device (disk): The disk radius r0, the rotation frequency f of the disk, the maximum slag flow rate Gmax at which the slag becomes atomized, as well as the mechanical power N required for rotation of the disk.
In this paper, we obtain fairly simple expressions that enable us to determine the values of r0, f, Gmax, and N as a function of the parameters d and w, and present the results from an analysis of these functions. This analysis also takes into account the thermophysical properties of blast furnace slag: density, coefficient of viscosity, and the coefficient of surface tension. For example, slag droplets with diameter 2 mm and speed 5 m/sec cool in the granulation chamber from 1500 to 1200°C (guaranteed solidification temperature) in about 0.7 sec, in which case the radius of the chamber should be at least 3.5 m. The rotating disk should be approximately 0.047 m in diameter, with a rotation frequency of 16.8 Hz. The maximum volume flow rate of sprayed slag is 0.0035 m3/sec = 12.6 m3/h. The specific consumption of mechanical energy for the disk drive will be ≈ 0.0105 kW·h per metric ton of molten slag. As the droplet velocity w increases, the size of the granulation chamber and the values of r0, Gmax, N will increase significantly, and the rotation frequency of the disk will decrease. As the droplet diameter d decreases, the size of the granulation chamber and the values of r0 and Gmax will significantly decrease, the frequency f will increase, and there will be a slight increase in the power N.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat S. J. Pickering, N. Hay, T. F. Roylance, and G. H. Thomas, “New process for dry granulation and heat recovery from molten blast-furnace slag,” Ironmaking Steelmaking, 12, No. 1, 14–21 (1985). S. J. Pickering, N. Hay, T. F. Roylance, and G. H. Thomas, “New process for dry granulation and heat recovery from molten blast-furnace slag,” Ironmaking Steelmaking, 12, No. 1, 14–21 (1985).
2.
Zurück zum Zitat D. Xie, S. Jahanshahi, and T. Norgate, “Dry granulation to provide a sustainable option for slag treatment,” in Sustainable Mining 2010 Conference (Kalgoorlie, WA, Australia, August 17–19, 2010), AusIMM, Carlton, Vic. (2010), pp. 22–28. D. Xie, S. Jahanshahi, and T. Norgate, “Dry granulation to provide a sustainable option for slag treatment,” in Sustainable Mining 2010 Conference (Kalgoorlie, WA, Australia, August 17–19, 2010), AusIMM, Carlton, Vic. (2010), pp. 22–28.
3.
Zurück zum Zitat H. Kappes and D. Michels, “Dry granulation of slag with energy recovery: From birth of an idea to a pilot plant,” Chern. Met., No. 5(1001), 46–52 (2015). H. Kappes and D. Michels, “Dry granulation of slag with energy recovery: From birth of an idea to a pilot plant,” Chern. Met., No. 5(1001), 46–52 (2015).
4.
Zurück zum Zitat H. Zhang, H. Wang, X. Zhu, Y.-J. Qiu, K. Li, R. Chen, and Q. Liao, “A review of waste heat recovery technologies towards molten slag in steel industry,” Appl. Energy, 112, 956–966 (2013).CrossRef H. Zhang, H. Wang, X. Zhu, Y.-J. Qiu, K. Li, R. Chen, and Q. Liao, “A review of waste heat recovery technologies towards molten slag in steel industry,” Appl. Energy, 112, 956–966 (2013).CrossRef
5.
Zurück zum Zitat P. Yu, S. Wang, Y. Li, and G. Xu, “A review of granulation process for blast furnace slag,” in: MATEC Web of Conferences (EDP Sciences, 2016), Vol. 68 (2016), pp. 6–7. P. Yu, S. Wang, Y. Li, and G. Xu, “A review of granulation process for blast furnace slag,” in: MATEC Web of Conferences (EDP Sciences, 2016), Vol. 68 (2016), pp. 6–7.
6.
Zurück zum Zitat A. S. Kadyrov, V. A. Kunaev, and I. V. Georgiadi, “Prospects for processing of ferrous metallurgical waste based on arcelormittal temirtau experience,” Metallurgist, 62, 22–28 (2018); English translation: Metallurg, No. 1, 29–34 (2018). A. S. Kadyrov, V. A. Kunaev, and I. V. Georgiadi, “Prospects for processing of ferrous metallurgical waste based on arcelormittal temirtau experience,” Metallurgist, 62, 22–28 (2018); English translation: Metallurg, No. 1, 29–34 (2018).
7.
Zurück zum Zitat S. V. Filatov, A. V. Lozovich, V. N. Titov, S. A. Zagainov, and I. F. Kurunov, “Analysis of the blast-furnace process at high smelting rate,” Metallurgist, 61, 844–848 (2018); English translation: Metallurg, No. 10, 18–21 (2017). S. V. Filatov, A. V. Lozovich, V. N. Titov, S. A. Zagainov, and I. F. Kurunov, “Analysis of the blast-furnace process at high smelting rate,” Metallurgist, 61, 844–848 (2018); English translation: Metallurg, No. 10, 18–21 (2017).
8.
Zurück zum Zitat S. V. Filatov, I. F. Kurunov, V. N. Titov, and S. A. Zagainov, “Introduction of energy efficient solutions during cast iron smelting at PJSC NLMK,” Metallurgist, 63, 335–340 (2019); English translation: Metallurg, No. 4, 25–28 (2019). S. V. Filatov, I. F. Kurunov, V. N. Titov, and S. A. Zagainov, “Introduction of energy efficient solutions during cast iron smelting at PJSC NLMK,” Metallurgist, 63, 335–340 (2019); English translation: Metallurg, No. 4, 25–28 (2019).
9.
Zurück zum Zitat O. P. Onorin, A. A. Polinov, A. V. Pavlov, N. A. Spirin, and I. A. Gurin, “About a possibility of using blast furnace heat balance to control heat losses,” Metallurgist, 62, 218–224 (2018); English translation: Metallurg, No. 3, 30–34 (2018). O. P. Onorin, A. A. Polinov, A. V. Pavlov, N. A. Spirin, and I. A. Gurin, “About a possibility of using blast furnace heat balance to control heat losses,” Metallurgist, 62, 218–224 (2018); English translation: Metallurg, No. 3, 30–34 (2018).
10.
Zurück zum Zitat E. G. Urbanovich, V. A. Panov, V. F. Voropaev, V. F. Voropaev, and V. I. Basov, “Heat losses with molten blast-furnace slag and engineering measures to reduce such losses,” Izv. Vyssh. Uchebn. Zaved., Chern. Metall., No. 7 (1303), 51–56 (2008). E. G. Urbanovich, V. A. Panov, V. F. Voropaev, V. F. Voropaev, and V. I. Basov, “Heat losses with molten blast-furnace slag and engineering measures to reduce such losses,” Izv. Vyssh. Uchebn. Zaved., Chern. Metall., No. 7 (1303), 51–56 (2008).
11.
Zurück zum Zitat S. V. Lukin, N. I. Shestakov, and E. M. Il’icheva, “Heat exchange in the granulation chamber of an installation for slag dry granulation,” Metallurgist, 63, 804–812 (2019); English translation: Metallurg, No. 8, 36–41 (2019). S. V. Lukin, N. I. Shestakov, and E. M. Il’icheva, “Heat exchange in the granulation chamber of an installation for slag dry granulation,” Metallurgist, 63, 804–812 (2019); English translation: Metallurg, No. 8, 36–41 (2019).
12.
Zurück zum Zitat S. V. Lukin, A. V. Fokin, and E. M. Il’icheva, “Heat transfer in fluidized beds in a dry slag granulation unit,” Metallurgist, 64, 281–287 (2020); English translation: Metallurg, No. 4, 16–20 (2020). S. V. Lukin, A. V. Fokin, and E. M. Il’icheva, “Heat transfer in fluidized beds in a dry slag granulation unit,” Metallurgist, 64, 281–287 (2020); English translation: Metallurg, No. 4, 16–20 (2020).
13.
Zurück zum Zitat D. G. Pazhi and V. S. Galustov, Fundamentals of Spraying Technology [in Russian], Khimiya, Moscow (1984). D. G. Pazhi and V. S. Galustov, Fundamentals of Spraying Technology [in Russian], Khimiya, Moscow (1984).
14.
Zurück zum Zitat D. N. Togobitskaya, A. I. Bel’kova, A. Khamkhotko, D. Stepanenko, P. Otorvin, and S. Nyn’, “Experience from development and implementation of a system for monitoring and controlling slag conditions during blast-furnace smelting using the charge and process conditions prevalent in Ukrainian plants,” Fundamental’nye i Prikladnye Problemy Chernoy Metallurgii, No. 19, 100–112 (2009). D. N. Togobitskaya, A. I. Bel’kova, A. Khamkhotko, D. Stepanenko, P. Otorvin, and S. Nyn’, “Experience from development and implementation of a system for monitoring and controlling slag conditions during blast-furnace smelting using the charge and process conditions prevalent in Ukrainian plants,” Fundamental’nye i Prikladnye Problemy Chernoy Metallurgii, No. 19, 100–112 (2009).
15.
Zurück zum Zitat B. P. Yur’ev, “A study of the thermal and physical properties of blast-furnace slag during heat treatment,” Izv. Vyssh. Uchebn. Zaved., Chern. Metall., No. 11, 5–10 (2014). B. P. Yur’ev, “A study of the thermal and physical properties of blast-furnace slag during heat treatment,” Izv. Vyssh. Uchebn. Zaved., Chern. Metall., No. 11, 5–10 (2014).
Metadaten
Titel
Determination of Geometric and Operating Parameters of Device for Spraying Molten Slag in a Dry Slag Granulation Plant
verfasst von
S. V. Lukin
N. I. Shestakov
E. M. Il’icheva
A. V. Fokin
Publikationsdatum
03.07.2021
Verlag
Springer US
Erschienen in
Metallurgist / Ausgabe 3-4/2021
Print ISSN: 0026-0894
Elektronische ISSN: 1573-8892
DOI
https://doi.org/10.1007/s11015-021-01155-4

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.