Skip to main content

2018 | OriginalPaper | Buchkapitel

6. Determined Blind Source Separation with Independent Low-Rank Matrix Analysis

verfasst von : Daichi Kitamura, Nobutaka Ono, Hiroshi Sawada, Hirokazu Kameoka, Hiroshi Saruwatari

Erschienen in: Audio Source Separation

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this chapter, we address the determined blind source separation problem and introduce a new effective method of unifying independent vector analysis (IVA) and nonnegative matrix factorization (NMF). IVA is a state-of-the-art technique that utilizes the statistical independence between source vectors. However, since the source model in IVA is based on a spherically symmetric multivariate distribution, IVA cannot utilize the characteristics of specific spectral structures such as various sounds appearing in music signals. To solve this problem, we introduce NMF as the source model in IVA to capture the spectral structures. Since this approach is a natural extension of the source model from a vector to a low-rank matrix represented by NMF, the new method is called independent low-rank matrix analysis (ILRMA). We also reveal the relationship between IVA, ILRMA, and multichannel NMF (MNMF), namely, IVA and ILRMA are identical to a special case of MNMF, which employs a rank-1 spatial model. Experimental results show the efficacy of ILRMA compared with IVA and MNMF in terms of separation accuracy and convergence speed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat P. Comon, Independent component analysis, a new concept? Signal Process. 36(3), 287–314 (1994)CrossRefMATH P. Comon, Independent component analysis, a new concept? Signal Process. 36(3), 287–314 (1994)CrossRefMATH
2.
Zurück zum Zitat A.J. Bell, T.J. Sejnowski, An information-maximization approach to blind separation and blind deconvolution. Neural Comput. 7(6), 1129–1159 (1995)CrossRef A.J. Bell, T.J. Sejnowski, An information-maximization approach to blind separation and blind deconvolution. Neural Comput. 7(6), 1129–1159 (1995)CrossRef
3.
Zurück zum Zitat J.-F. Cardoso, Infomax and maximum likelihood for blind source separation. IEEE Signal Process. Lett. 4(4), 112–114 (1997)CrossRef J.-F. Cardoso, Infomax and maximum likelihood for blind source separation. IEEE Signal Process. Lett. 4(4), 112–114 (1997)CrossRef
4.
Zurück zum Zitat S. Haykin (ed.), Unsupervised Adaptive Filtering (Volume I: Blind Source Separation) (Wiley-Interscience, 2000) S. Haykin (ed.), Unsupervised Adaptive Filtering (Volume I: Blind Source Separation) (Wiley-Interscience, 2000)
5.
Zurück zum Zitat A. Hyvärinen, J. Karhunen, E. Oja, Independent Component Analysis (Wiley-Interscience, 2001) A. Hyvärinen, J. Karhunen, E. Oja, Independent Component Analysis (Wiley-Interscience, 2001)
6.
Zurück zum Zitat P. Smaragdis, Blind separation of convolved mixtures in the frequency domain. Neurocomputing 22(1), 21–34 (1998)CrossRefMATH P. Smaragdis, Blind separation of convolved mixtures in the frequency domain. Neurocomputing 22(1), 21–34 (1998)CrossRefMATH
7.
Zurück zum Zitat S. Araki, R. Mukai, S. Makino, T. Nishikawa, H. Saruwatari, The fundamental limitation of frequency domain blind source separation for convolutive mixtures of speech. IEEE Trans. Speech and Audio Process. 11(2), 109–116 (2003)CrossRefMATH S. Araki, R. Mukai, S. Makino, T. Nishikawa, H. Saruwatari, The fundamental limitation of frequency domain blind source separation for convolutive mixtures of speech. IEEE Trans. Speech and Audio Process. 11(2), 109–116 (2003)CrossRefMATH
8.
Zurück zum Zitat H. Sawada, R. Mukai, S. Araki, S. Makino, Convolutive blind source separation for more than two sources in the frequency domain, in Proceeding ICASSP (2004), pp. III-885–III-888 H. Sawada, R. Mukai, S. Araki, S. Makino, Convolutive blind source separation for more than two sources in the frequency domain, in Proceeding ICASSP (2004), pp. III-885–III-888
9.
Zurück zum Zitat H. Buchner, R. Aichner, W. Kellerman, A generalization of blind source separation algorithms for convolutive mixtures based on second order statistics. IEEE Trans. Speech and Audio Process. 13(1), 120–134 (2005)CrossRef H. Buchner, R. Aichner, W. Kellerman, A generalization of blind source separation algorithms for convolutive mixtures based on second order statistics. IEEE Trans. Speech and Audio Process. 13(1), 120–134 (2005)CrossRef
10.
Zurück zum Zitat H. Saruwatari, T. Kawamura, T. Nishikawa, A. Lee, K. Shikano, Blind source separation based on a fast-convergence algorithm combining ICA and beamforming. IEEE Trans. Speech and Audio Process. 14(2), 666–678 (2006)CrossRef H. Saruwatari, T. Kawamura, T. Nishikawa, A. Lee, K. Shikano, Blind source separation based on a fast-convergence algorithm combining ICA and beamforming. IEEE Trans. Speech and Audio Process. 14(2), 666–678 (2006)CrossRef
11.
Zurück zum Zitat D.D. Lee, H.S. Seung, Learning the parts of objects by non-negative matrix factorization. Nature 401(6755), 788–791 (1999)CrossRefMATH D.D. Lee, H.S. Seung, Learning the parts of objects by non-negative matrix factorization. Nature 401(6755), 788–791 (1999)CrossRefMATH
12.
Zurück zum Zitat D.D. Lee, H.S. Seung, Algorithms for non-negative matrix factorization, in Proceedings NIPS (2000), pp. 556–562 D.D. Lee, H.S. Seung, Algorithms for non-negative matrix factorization, in Proceedings NIPS (2000), pp. 556–562
13.
Zurück zum Zitat A. Cichocki, R. Zdunek, A.H. Phan, S. Amari, Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multi-way Data Analysis and Blind Source Separation (Wiley, 2009) A. Cichocki, R. Zdunek, A.H. Phan, S. Amari, Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multi-way Data Analysis and Blind Source Separation (Wiley, 2009)
14.
Zurück zum Zitat T. Virtanen, Monaural sound source separation by nonnegative matrix factorization with temporal continuity and sparseness criteria. IEEE Trans. Audio, Speech, and Lang. Process. 15(3), 1066–1074 (2007)CrossRef T. Virtanen, Monaural sound source separation by nonnegative matrix factorization with temporal continuity and sparseness criteria. IEEE Trans. Audio, Speech, and Lang. Process. 15(3), 1066–1074 (2007)CrossRef
15.
Zurück zum Zitat A. Ozerov, C. Févotte, M. Charbit, Factorial scaled hidden Markov model for polyphonic audio representation and source separation, in Proceedings WASPAA (2009), pp. 121–124 A. Ozerov, C. Févotte, M. Charbit, Factorial scaled hidden Markov model for polyphonic audio representation and source separation, in Proceedings WASPAA (2009), pp. 121–124
16.
Zurück zum Zitat P. Smaragdis, B. Raj, M. Shashanka, Supervised and semi-supervised separation of sounds from single-channel mixtures, in Proceedings ICA (2007), pp. 414–421 P. Smaragdis, B. Raj, M. Shashanka, Supervised and semi-supervised separation of sounds from single-channel mixtures, in Proceedings ICA (2007), pp. 414–421
17.
Zurück zum Zitat D. Kitamura, H. Saruwatari, K. Yagi, K. Shikano, Y. Takahashi, K. Kondo, Music signal separation based on supervised nonnegative matrix factorization with orthogonality and maximum-divergence penalties. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E97-A(5), 1113–1118 (2014) D. Kitamura, H. Saruwatari, K. Yagi, K. Shikano, Y. Takahashi, K. Kondo, Music signal separation based on supervised nonnegative matrix factorization with orthogonality and maximum-divergence penalties. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E97-A(5), 1113–1118 (2014)
18.
Zurück zum Zitat D. Kitamura, H. Saruwatari, H. Kameoka, Y. Takahashi, K. Kondo, S. Nakamura, Multichannel signal separation combining directional clustering and nonnegative matrix factorization with spectrogram restoration. IEEE/ACM Trans. Audio, Speech, and Lang. Process. 23(4), 654–669 (2015)CrossRef D. Kitamura, H. Saruwatari, H. Kameoka, Y. Takahashi, K. Kondo, S. Nakamura, Multichannel signal separation combining directional clustering and nonnegative matrix factorization with spectrogram restoration. IEEE/ACM Trans. Audio, Speech, and Lang. Process. 23(4), 654–669 (2015)CrossRef
19.
Zurück zum Zitat S. Araki, F. Nesta, E. Vincent, Z. Koldovský, G. Nolte, A. Ziehe, A. Benichoux, The 2011 signal separation evaluation campaign (SiSEC2011):-audio source separation, in Proceedings LVA/ICA (2012), pp. 414–422 S. Araki, F. Nesta, E. Vincent, Z. Koldovský, G. Nolte, A. Ziehe, A. Benichoux, The 2011 signal separation evaluation campaign (SiSEC2011):-audio source separation, in Proceedings LVA/ICA (2012), pp. 414–422
20.
Zurück zum Zitat N. Ono, Z. Koldovský, S. Miyabe, N. Ito, The 2013 signal separation evaluation campaign (SiSEC2013), in Proceedings MLSP (2013) N. Ono, Z. Koldovský, S. Miyabe, N. Ito, The 2013 signal separation evaluation campaign (SiSEC2013), in Proceedings MLSP (2013)
21.
Zurück zum Zitat N. Ono, Z. Rafii, D. Kitamura, N. Ito, A. Liutkus, The 2015 signal separation evaluation campaign, in Proceedings LVA/ICA (2015), pp. 387–395 N. Ono, Z. Rafii, D. Kitamura, N. Ito, A. Liutkus, The 2015 signal separation evaluation campaign, in Proceedings LVA/ICA (2015), pp. 387–395
22.
Zurück zum Zitat A. Liutkus, F.-R. Stöter, Z. Rafii, D. Kitamura, B. Rivet, N. Ito, N. Ono, J. Fontecave, The 2016 signal separation evaluation campaign, in Proceedings LVA/ICA (2017) A. Liutkus, F.-R. Stöter, Z. Rafii, D. Kitamura, B. Rivet, N. Ito, N. Ono, J. Fontecave, The 2016 signal separation evaluation campaign, in Proceedings LVA/ICA (2017)
23.
Zurück zum Zitat S. Kurita, H. Saruwatari, S. Kajita, K. Takeda, F. Itakura, Evaluation of blind signal separation method using directivity pattern under reverberant conditions, in Proceedings ICASSP (2000), pp. 3140–3143 S. Kurita, H. Saruwatari, S. Kajita, K. Takeda, F. Itakura, Evaluation of blind signal separation method using directivity pattern under reverberant conditions, in Proceedings ICASSP (2000), pp. 3140–3143
24.
Zurück zum Zitat N. Murata, S. Ikeda, A. Ziehe, An approach to blind source separation based on temporal structure of speech signals. Neurocomputing 41(1–4), 1–24 (2001)CrossRefMATH N. Murata, S. Ikeda, A. Ziehe, An approach to blind source separation based on temporal structure of speech signals. Neurocomputing 41(1–4), 1–24 (2001)CrossRefMATH
25.
Zurück zum Zitat H. Sawada, R. Mukai, S. Araki, S. Makino, A robust and precise method for solving the permutation problem of frequency-domain blind source separation. IEEE Trans. Speech and Audio Process. 12(5), 530–538 (2004)CrossRef H. Sawada, R. Mukai, S. Araki, S. Makino, A robust and precise method for solving the permutation problem of frequency-domain blind source separation. IEEE Trans. Speech and Audio Process. 12(5), 530–538 (2004)CrossRef
26.
Zurück zum Zitat H. Sawada, S. Araki, S. Makino, Measuring dependence of bin-wise separated signals for permutation alignment in frequency-domain BSS, in Proceedings ISCAS (2007), pp. 3247–3250 H. Sawada, S. Araki, S. Makino, Measuring dependence of bin-wise separated signals for permutation alignment in frequency-domain BSS, in Proceedings ISCAS (2007), pp. 3247–3250
27.
Zurück zum Zitat A. Hiroe, Solution of permutation problem in frequency domain ICA using multivariate probability density functions, in Proceedings ICA (2006), pp. 601–608 A. Hiroe, Solution of permutation problem in frequency domain ICA using multivariate probability density functions, in Proceedings ICA (2006), pp. 601–608
28.
Zurück zum Zitat T. Kim, T. Eltoft, T.-W. Lee, Independent vector analysis: an extension of ICA to multivariate components, in Proceedings ICA (2006), pp. 165–172 T. Kim, T. Eltoft, T.-W. Lee, Independent vector analysis: an extension of ICA to multivariate components, in Proceedings ICA (2006), pp. 165–172
29.
Zurück zum Zitat T. Kim, H.T. Attias, S.-Y. Lee, T.-W. Lee, Blind source separation exploiting higher-order frequency dependencies. IEEE Trans. Audio, Speech, and Lang. Process. 15(1), 70–79 (2007)CrossRef T. Kim, H.T. Attias, S.-Y. Lee, T.-W. Lee, Blind source separation exploiting higher-order frequency dependencies. IEEE Trans. Audio, Speech, and Lang. Process. 15(1), 70–79 (2007)CrossRef
30.
Zurück zum Zitat D. Kitamura, N. Ono, H. Sawada, H. Kameoka, H. Saruwatari, Efficient multichannel nonnegative matrix factorization exploiting rank-1 spatial model, in Proceedings ICASSP (2015), pp. 276–280 D. Kitamura, N. Ono, H. Sawada, H. Kameoka, H. Saruwatari, Efficient multichannel nonnegative matrix factorization exploiting rank-1 spatial model, in Proceedings ICASSP (2015), pp. 276–280
31.
Zurück zum Zitat D. Kitamura, N. Ono, H. Sawada, H. Kameoka, H. Saruwatari, Determined blind source separation unifying independent vector analysis and nonnegative matrix factorization. IEEE/ACM Trans. Audio, Speech, and Lang. Process. 24(9), 1626–1641 (2016)CrossRef D. Kitamura, N. Ono, H. Sawada, H. Kameoka, H. Saruwatari, Determined blind source separation unifying independent vector analysis and nonnegative matrix factorization. IEEE/ACM Trans. Audio, Speech, and Lang. Process. 24(9), 1626–1641 (2016)CrossRef
32.
Zurück zum Zitat S. Arberet, A. Ozerov, N.Q.K. Duong, E. Vincent, R. Gribonval, F. Bimbot, P. Vandergheynst, Nonnegative matrix factorization and spatial covariance model for under-determined reverberant audio source separation, in Proceedings ISSPA (2010), pp. 1–4 S. Arberet, A. Ozerov, N.Q.K. Duong, E. Vincent, R. Gribonval, F. Bimbot, P. Vandergheynst, Nonnegative matrix factorization and spatial covariance model for under-determined reverberant audio source separation, in Proceedings ISSPA (2010), pp. 1–4
33.
Zurück zum Zitat H. Kameoka, T. Yoshioka, M. Hamamura, J. Le Roux, K. Kashino, Statistical model of speech signals based on composite autoregressive system with application to blind source separation, in Proceedings LVA/ICA (2010), pp. 245–253 H. Kameoka, T. Yoshioka, M. Hamamura, J. Le Roux, K. Kashino, Statistical model of speech signals based on composite autoregressive system with application to blind source separation, in Proceedings LVA/ICA (2010), pp. 245–253
34.
Zurück zum Zitat A. Ozerov, C. Févotte, Multichannel nonnegative matrix factorization in convolutive mixtures for audio source separation. IEEE Trans. Audio, Speech, and Lang. Process. 18(3), 550–563 (2010)CrossRef A. Ozerov, C. Févotte, Multichannel nonnegative matrix factorization in convolutive mixtures for audio source separation. IEEE Trans. Audio, Speech, and Lang. Process. 18(3), 550–563 (2010)CrossRef
35.
Zurück zum Zitat A. Ozerov, C. Févotte, R. Blouet, J.-L. Durrieu, Multichannel nonnegative tensor factorization with structured constraints for user-guided audio source separation, in Proceedings ICASSP (2011), pp. 257–260 A. Ozerov, C. Févotte, R. Blouet, J.-L. Durrieu, Multichannel nonnegative tensor factorization with structured constraints for user-guided audio source separation, in Proceedings ICASSP (2011), pp. 257–260
36.
Zurück zum Zitat H. Sawada, H. Kameoka, S. Araki, N. Ueda, Multichannel extensions of non-negative matrix factorization with complex-valued data. IEEE Trans. Audio, Speech, and Lang. Process. 21(5), 971–982 (2013)CrossRef H. Sawada, H. Kameoka, S. Araki, N. Ueda, Multichannel extensions of non-negative matrix factorization with complex-valued data. IEEE Trans. Audio, Speech, and Lang. Process. 21(5), 971–982 (2013)CrossRef
37.
Zurück zum Zitat T. Eltoft, T. Kim, T.-W. Lee, On the multivariate Laplace distribution. IEEE Signal Process. Lett. 13(5), 300–303 (2006)CrossRef T. Eltoft, T. Kim, T.-W. Lee, On the multivariate Laplace distribution. IEEE Signal Process. Lett. 13(5), 300–303 (2006)CrossRef
38.
Zurück zum Zitat S. Kotz, T.J. Kozubowski, K. Podgórski, Symmetric multivariate Laplace distribution, in The Laplace Distribution and Generalizations, chap. 5 (Birkhäuser, Basel, 2001), pp. 231–238 S. Kotz, T.J. Kozubowski, K. Podgórski, Symmetric multivariate Laplace distribution, in The Laplace Distribution and Generalizations, chap. 5 (Birkhäuser, Basel, 2001), pp. 231–238
39.
Zurück zum Zitat T. Adali, H. Ki, J.-F. Cardoso, Complex ICA using nonlinear functions. IEEE Trans. Signal Process. 56(9), 4536–4544 (2008)MathSciNetCrossRef T. Adali, H. Ki, J.-F. Cardoso, Complex ICA using nonlinear functions. IEEE Trans. Signal Process. 56(9), 4536–4544 (2008)MathSciNetCrossRef
40.
Zurück zum Zitat N. Ono, Stable and fast update rules for independent vector analysis based on auxiliary function technique, in Proceedings WASPAA (2011), pp. 189–192 N. Ono, Stable and fast update rules for independent vector analysis based on auxiliary function technique, in Proceedings WASPAA (2011), pp. 189–192
41.
Zurück zum Zitat N. Ono, Fast stereo independent vector analysis and its implementation on mobile phone, in Proceedings IWAENC (2012) N. Ono, Fast stereo independent vector analysis and its implementation on mobile phone, in Proceedings IWAENC (2012)
42.
Zurück zum Zitat N. Ono, Auxiliary-function-based independent vector analysis with power of vector-norm type weighting functions, in Proceedings APSIPA ASC (2012) N. Ono, Auxiliary-function-based independent vector analysis with power of vector-norm type weighting functions, in Proceedings APSIPA ASC (2012)
43.
Zurück zum Zitat T. Ono, N. Ono, S. Sagayama, User-guided independent vector analysis with source activity tuning, in Proceedings ICASSP (2012), pp. 2417–2420 T. Ono, N. Ono, S. Sagayama, User-guided independent vector analysis with source activity tuning, in Proceedings ICASSP (2012), pp. 2417–2420
44.
Zurück zum Zitat K. Hild, H.T. Attias, S. Nagarajan, An expectation-maximization method for spatio-temporal blind source separation using an AR-MOG source model. IEEE Trans. Neural Netw. 19(3), 508–519 (2008)CrossRefMATH K. Hild, H.T. Attias, S. Nagarajan, An expectation-maximization method for spatio-temporal blind source separation using an AR-MOG source model. IEEE Trans. Neural Netw. 19(3), 508–519 (2008)CrossRefMATH
45.
Zurück zum Zitat C. Févotte, J.-F. Cardoso, Maximum likelihood approach for blind audio source separation using time-frequency Gaussian source models, in Proceedings WASPAA (2005), pp. 78–81 C. Févotte, J.-F. Cardoso, Maximum likelihood approach for blind audio source separation using time-frequency Gaussian source models, in Proceedings WASPAA (2005), pp. 78–81
46.
Zurück zum Zitat T. Nakatani, B.-H. Juang, T. Yoshioka, K. Kinoshita, M. Delcroix, M. Miyoshi, Speech dereverberation based on maximum-likelihood estimation with time-varying Gaussian source model. IEEE Trans. Audio, Speech, and Lang. Process. 16(8), 1512–1527 (2008)CrossRef T. Nakatani, B.-H. Juang, T. Yoshioka, K. Kinoshita, M. Delcroix, M. Miyoshi, Speech dereverberation based on maximum-likelihood estimation with time-varying Gaussian source model. IEEE Trans. Audio, Speech, and Lang. Process. 16(8), 1512–1527 (2008)CrossRef
47.
Zurück zum Zitat C. Févotte, N. Bertin, J.-L. Durrieu, Nonnegative matrix factorization with the Itakura-Saito divergence. With application to music analysis. Neural Comput. 21(3), 793–830 (2009)CrossRefMATH C. Févotte, N. Bertin, J.-L. Durrieu, Nonnegative matrix factorization with the Itakura-Saito divergence. With application to music analysis. Neural Comput. 21(3), 793–830 (2009)CrossRefMATH
48.
Zurück zum Zitat F.D. Neeser, J.L. Massey, Proper complex random processes with applications to information theory. IEEE Trans. Inf. Theory 39(4), 1293–1302 (1993)MathSciNetCrossRefMATH F.D. Neeser, J.L. Massey, Proper complex random processes with applications to information theory. IEEE Trans. Inf. Theory 39(4), 1293–1302 (1993)MathSciNetCrossRefMATH
49.
Zurück zum Zitat F. Itakura, S. Saito, Analysis synthesis telephony based on the maximum likelihood method, in Proceedings ICA (1968), pp. C-17–C-20 F. Itakura, S. Saito, Analysis synthesis telephony based on the maximum likelihood method, in Proceedings ICA (1968), pp. C-17–C-20
50.
Zurück zum Zitat M. Nakano, H. Kameoka, J. Le Roux, Y. Kitano, N. Ono, S. Sagayama, Convergence-guaranteed multiplicative algorithms for nonnegative matrix factorization with beta-divergence, in Proceedings MLSP (2010), pp. 283–288 M. Nakano, H. Kameoka, J. Le Roux, Y. Kitano, N. Ono, S. Sagayama, Convergence-guaranteed multiplicative algorithms for nonnegative matrix factorization with beta-divergence, in Proceedings MLSP (2010), pp. 283–288
51.
Zurück zum Zitat A.R. López, N. Ono, U. Remes, K. Palomäki, M. Kurimo, Designing multichannel source separation based on single-channel source separation, in Proceedings ICASSP (2015), pp. 469–473 A.R. López, N. Ono, U. Remes, K. Palomäki, M. Kurimo, Designing multichannel source separation based on single-channel source separation, in Proceedings ICASSP (2015), pp. 469–473
52.
Zurück zum Zitat N. Ono, S. Miyabe, Auxiliary-function-based independent component analysis for super-Gaussian sources, in Proceedings LVA/ICA (2010), pp. 165–172 N. Ono, S. Miyabe, Auxiliary-function-based independent component analysis for super-Gaussian sources, in Proceedings LVA/ICA (2010), pp. 165–172
53.
Zurück zum Zitat S. Amari, A. Cichocki, H.H. Yang, A new learning algorithm for blind signal separation, in Proceedings NIPS (1996), pp. 757–763 S. Amari, A. Cichocki, H.H. Yang, A new learning algorithm for blind signal separation, in Proceedings NIPS (1996), pp. 757–763
54.
Zurück zum Zitat A. Cichocki, S. Amari, Adaptive Blind Signal and Image Processing: Learning Algorithms and Applications, vol. 1 (Wiley, 2002) A. Cichocki, S. Amari, Adaptive Blind Signal and Image Processing: Learning Algorithms and Applications, vol. 1 (Wiley, 2002)
56.
Zurück zum Zitat D. FitzGerald, M. Cranitch, E. Coyle, Non-negative tensor factorisation for sound source separation, in Proceedings ISSC (2005), pp. 8–12 D. FitzGerald, M. Cranitch, E. Coyle, Non-negative tensor factorisation for sound source separation, in Proceedings ISSC (2005), pp. 8–12
57.
Zurück zum Zitat R.M. Parry, I.A. Essa, Estimating the spatial position of spectral components in audio, in Proceedings ICA (2006), pp. 666–673 R.M. Parry, I.A. Essa, Estimating the spatial position of spectral components in audio, in Proceedings ICA (2006), pp. 666–673
58.
Zurück zum Zitat Y. Mitsufuji, A. Roebel, Sound source separation based on non-negative tensor factorization incorporating spatial cue as prior knowledge, in Proceedings ICASSP (2013), pp. 71–75 Y. Mitsufuji, A. Roebel, Sound source separation based on non-negative tensor factorization incorporating spatial cue as prior knowledge, in Proceedings ICASSP (2013), pp. 71–75
59.
Zurück zum Zitat N.Q.K. Duong, E. Vincent, R. Gribonval, Spatial covariance models for under-determined reverberant audio source separation, in Proceedings WASPAA (2009), pp. 129–132 N.Q.K. Duong, E. Vincent, R. Gribonval, Spatial covariance models for under-determined reverberant audio source separation, in Proceedings WASPAA (2009), pp. 129–132
60.
Zurück zum Zitat N.Q.K. Duong, E. Vincent, R. Gribonval, Under-determined reverberant audio source separation using a full-rank spatial covariance model. IEEE Trans. Audio, Speech, and Lang. Process. 18(7), 1830–1840 (2010)CrossRef N.Q.K. Duong, E. Vincent, R. Gribonval, Under-determined reverberant audio source separation using a full-rank spatial covariance model. IEEE Trans. Audio, Speech, and Lang. Process. 18(7), 1830–1840 (2010)CrossRef
61.
Zurück zum Zitat K.U. Simmer, J. Bitzer, C. Marro, Post-filtering techniques, in Microphone Arrays: Signal Processing Techniques and Applications, ed. by M. Brandstein, D. Ward, chap. 3 (Springer, Heidelberg, 2001), pp. 39–60 K.U. Simmer, J. Bitzer, C. Marro, Post-filtering techniques, in Microphone Arrays: Signal Processing Techniques and Applications, ed. by M. Brandstein, D. Ward, chap. 3 (Springer, Heidelberg, 2001), pp. 39–60
62.
Zurück zum Zitat W. James, C. Stein, Estimation with quadratic loss, in Proceedings Berkeley Symposium on Mathematical Statistics and Probability, vol. 1 (1961), pp. 361–379 W. James, C. Stein, Estimation with quadratic loss, in Proceedings Berkeley Symposium on Mathematical Statistics and Probability, vol. 1 (1961), pp. 361–379
63.
Zurück zum Zitat B. Kulis, M. Sustik, I. Dhillon, Learning low-rank kernel matrices, in Proceedings ICML (2006), pp. 505–512 B. Kulis, M. Sustik, I. Dhillon, Learning low-rank kernel matrices, in Proceedings ICML (2006), pp. 505–512
64.
Zurück zum Zitat S. Nakamura, K. Hiyane, F. Asano, T. Nishiura, T. Yamada, Acoustical sound database in real environments for sound scene understanding and hands-free speech recognition, in Proceedings LREC (2000), pp. 965–968 S. Nakamura, K. Hiyane, F. Asano, T. Nishiura, T. Yamada, Acoustical sound database in real environments for sound scene understanding and hands-free speech recognition, in Proceedings LREC (2000), pp. 965–968
65.
Zurück zum Zitat E. Vincent, R. Gribonval, C. Févotte, Performance measurement in blind audio source separation. IEEE Trans. Audio, Speech, and Lang. Process. 14(4), 1462–1469 (2006)CrossRef E. Vincent, R. Gribonval, C. Févotte, Performance measurement in blind audio source separation. IEEE Trans. Audio, Speech, and Lang. Process. 14(4), 1462–1469 (2006)CrossRef
66.
Zurück zum Zitat S. Araki, S. Makino, Y. Hinamoto, R. Mukai, T. Nishikawa, H. Saruwatari, Equivalence between frequency-domain blind source separation and frequency-domain adaptive beamforming for convolutive mixtures. EURASIP J. Adv. Signal Process. 2003(11), 1–10 (2003)CrossRefMATH S. Araki, S. Makino, Y. Hinamoto, R. Mukai, T. Nishikawa, H. Saruwatari, Equivalence between frequency-domain blind source separation and frequency-domain adaptive beamforming for convolutive mixtures. EURASIP J. Adv. Signal Process. 2003(11), 1–10 (2003)CrossRefMATH
67.
Zurück zum Zitat J.-F. Cardoso, A. Souloumiac, Blind beamforming for non-Gaussian signals. IEE Proc. F - Radar and Signal Process. 140(6), 362–370 (1993)CrossRef J.-F. Cardoso, A. Souloumiac, Blind beamforming for non-Gaussian signals. IEE Proc. F - Radar and Signal Process. 140(6), 362–370 (1993)CrossRef
68.
Zurück zum Zitat D.B. Ward, R.A. Kennedy, R.C. Williamson, Constant directivity beamforming, in Microphone Arrays: Signal Processing Techniques and Applications, ed. by M. Brandstein, D. Ward, chap. 1 (Springer, Heidelberg, 2001), pp. 3–17 D.B. Ward, R.A. Kennedy, R.C. Williamson, Constant directivity beamforming, in Microphone Arrays: Signal Processing Techniques and Applications, ed. by M. Brandstein, D. Ward, chap. 1 (Springer, Heidelberg, 2001), pp. 3–17
69.
Zurück zum Zitat D. Kitamura, N. Ono, H. Sawada, H. Kameoka, H. Saruwatari, Relaxation of rank-1 spatial constraint in overdetermined blind source separation, in Proceedings EUSIPCO (2015), pp. 1271–1275 D. Kitamura, N. Ono, H. Sawada, H. Kameoka, H. Saruwatari, Relaxation of rank-1 spatial constraint in overdetermined blind source separation, in Proceedings EUSIPCO (2015), pp. 1271–1275
Metadaten
Titel
Determined Blind Source Separation with Independent Low-Rank Matrix Analysis
verfasst von
Daichi Kitamura
Nobutaka Ono
Hiroshi Sawada
Hirokazu Kameoka
Hiroshi Saruwatari
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-73031-8_6

Neuer Inhalt