Skip to main content
Erschienen in: European Journal of Wood and Wood Products 6/2020

18.09.2020 | Original

Determining acoustic and mechanical properties of Australian native hardwood species for guitar fretboard production

verfasst von: Maryam Shirmohammadi, Adam Faircloth, Adam Redman

Erschienen in: European Journal of Wood and Wood Products | Ausgabe 6/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Australian hardwood species have potential in musical instrumentation replacing hardwood species such as Dalbergia latifolia (Indian rosewood- IRW) which is the main species used in guitar fretboard production. In this study, a detailed characterisation was conducted using dynamic and static testing to determine samples’ mechanical strength. Dynamic testing was conducted using non-destructive acoustic testing to record the sound velocity travelling through boards in the longitudinal grain direction. The elastic modulus for the tested samples was also calculated using the dynamic results. Four point bending tests were conducted in accordance with AS/NZS 4063.1 to determine the bending strength (MOR) and stiffness (MOE) to be compared with the dynamic results. The Janka hardness for each of the species was determined for reference in accordance with the Australian testing method developed by J.J. Mack. Species tested had sound radiation characteristics values close to Indian rosewood (IRW) samples tested. The internal friction of Australian samples tested and IRW were low providing indication for future applications of these species to musical instrument manufacture. Sound quality factor and speed of sound determined for tested species were similar to IRW. Mechanical strength and performance of the tested species displayed similar values to the IRW properties; indicating the potential of these species for long-term use in fretboard applications. The MOE and MOR values for Australian hardwood species were dependent on the density; the Queensland walnut (QWL), Kuranda Satin ash (KSA), Hickory ash (HKA) and Red mahogany (RMG) samples had highest mechanical strength values within the range of IRW including the Janka hardness, MOR and MOE values. The work presented here identified four Australian hardwood species with potential for fretboard production. These species will be tested for sound quality and performance prior to fretboard prototyping.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Ahvenainen P (2019) Anatomy and mechanical properties of woods used in electric guitars. IAWA J 40(1):106–S106CrossRef Ahvenainen P (2019) Anatomy and mechanical properties of woods used in electric guitars. IAWA J 40(1):106–S106CrossRef
Zurück zum Zitat Aramaki M, Baillères H, Brancheriau L, Kronland-Martinet R, Ystad S (2007) Sound quality assessment of wood for xylophone bars. J Acoust Soc Am 121(4):2407–2420CrossRef Aramaki M, Baillères H, Brancheriau L, Kronland-Martinet R, Ystad S (2007) Sound quality assessment of wood for xylophone bars. J Acoust Soc Am 121(4):2407–2420CrossRef
Zurück zum Zitat Bennett BC (2016) The sound of trees: wood selection in guitars and other chordophones. Econ Bot 70(1):49–63CrossRef Bennett BC (2016) The sound of trees: wood selection in guitars and other chordophones. Econ Bot 70(1):49–63CrossRef
Zurück zum Zitat Bootle KR (1983) Wood in Australia. Types, properties and uses. McGraw-Hill book company, Sydney Bootle KR (1983) Wood in Australia. Types, properties and uses. McGraw-Hill book company, Sydney
Zurück zum Zitat Brancheriau L, Baillères H, Détienne P, Gril J, Kronland R (2006a) Key signal and wood anatomy parameters related to the acoustic quality of wood for xylophone-type percussion instruments. J Wood Sci 52(3):270–273CrossRef Brancheriau L, Baillères H, Détienne P, Gril J, Kronland R (2006a) Key signal and wood anatomy parameters related to the acoustic quality of wood for xylophone-type percussion instruments. J Wood Sci 52(3):270–273CrossRef
Zurück zum Zitat Brancheriau L, Baillères H, Détienne P, Kronland R, Metzger B (2006b) Classifying xylophone bar materials by perceptual, signal processing and wood anatomy analysis. Ann For Sci 63(1):73–81CrossRef Brancheriau L, Baillères H, Détienne P, Kronland R, Metzger B (2006b) Classifying xylophone bar materials by perceptual, signal processing and wood anatomy analysis. Ann For Sci 63(1):73–81CrossRef
Zurück zum Zitat Brémaud I (2012) Acoustical properties of wood in string instruments soundboards and tuned idiophones: biological and cultural diversity. J Acoust Soc Am 131(1):807–818CrossRef Brémaud I (2012) Acoustical properties of wood in string instruments soundboards and tuned idiophones: biological and cultural diversity. J Acoust Soc Am 131(1):807–818CrossRef
Zurück zum Zitat Brémaud I, El Kaïm Y, Guibal D, Minato K, Thibaut B, Gril J (2012) Characterisation and categorisation of the diversity in viscoelastic vibrational properties between 98 wood types. Ann For Sci 69(3):373–386CrossRef Brémaud I, El Kaïm Y, Guibal D, Minato K, Thibaut B, Gril J (2012) Characterisation and categorisation of the diversity in viscoelastic vibrational properties between 98 wood types. Ann For Sci 69(3):373–386CrossRef
Zurück zum Zitat Bucur V (1995) The acoustics of wood. CRC Press, Boca Raton Bucur V (1995) The acoustics of wood. CRC Press, Boca Raton
Zurück zum Zitat Bucur V (2016) Handbook of materials for string musical instruments. Springer, SwitzerlandCrossRef Bucur V (2016) Handbook of materials for string musical instruments. Springer, SwitzerlandCrossRef
Zurück zum Zitat Burdon R, Britton R, Walford G (2001) Wood stiffness and bending strength in relation to density in four native provenances of Pinus radiata. NZ J Forest Sci 31(1):130–146 Burdon R, Britton R, Walford G (2001) Wood stiffness and bending strength in relation to density in four native provenances of Pinus radiata. NZ J Forest Sci 31(1):130–146
Zurück zum Zitat Damodaran A, Lessard L, Babu AS (2015) An overview of fibre-reinforced composites for musical instrument soundboards. Acoust Aust 43(1):117–122CrossRef Damodaran A, Lessard L, Babu AS (2015) An overview of fibre-reinforced composites for musical instrument soundboards. Acoust Aust 43(1):117–122CrossRef
Zurück zum Zitat Dietrich T, Buchelt B, Wagenführ A (2014) modified wood as substitude for ebony in musical instruments. In: 7th European conference on wood modification, Lisbon Dietrich T, Buchelt B, Wagenführ A (2014) modified wood as substitude for ebony in musical instruments. In: 7th European conference on wood modification, Lisbon
Zurück zum Zitat Ghaznavi M, Rostamisani A, Roohnia M, Jahanlatibari A, Yaghmaeipour A (2013) Traditional varnishes and acoustical properties of wooden soundboards. Sci Int 1(12):401–407CrossRef Ghaznavi M, Rostamisani A, Roohnia M, Jahanlatibari A, Yaghmaeipour A (2013) Traditional varnishes and acoustical properties of wooden soundboards. Sci Int 1(12):401–407CrossRef
Zurück zum Zitat Global S (2010) 4063.1 (AS/NZS)—Characterization of structural timber test methods, Standards Australia Global S (2010) 4063.1 (AS/NZS)—Characterization of structural timber test methods, Standards Australia
Zurück zum Zitat Gore T (2011) Wood for guitars. In: Proceedings of meetings on acoustics 161ASA, ASA Gore T (2011) Wood for guitars. In: Proceedings of meetings on acoustics 161ASA, ASA
Zurück zum Zitat Hansen H (2006). Acoustic studies on Wood. Masters of Forestry Science University of Canterbury Hansen H (2006). Acoustic studies on Wood. Masters of Forestry Science University of Canterbury
Zurück zum Zitat Ilic J (2003) Dynamic MOE of 55 species using small wood beams. Holz Roh Werkst 61(3):167–172CrossRef Ilic J (2003) Dynamic MOE of 55 species using small wood beams. Holz Roh Werkst 61(3):167–172CrossRef
Zurück zum Zitat Krüger R, Zauer M, Wagenführ A (2018) Physical properties of native and thermally treated European woods as potential alternative to Indian rosewood for the use in classical guitars. Eur J Wood Prod 76(6):1663–1668CrossRef Krüger R, Zauer M, Wagenführ A (2018) Physical properties of native and thermally treated European woods as potential alternative to Indian rosewood for the use in classical guitars. Eur J Wood Prod 76(6):1663–1668CrossRef
Zurück zum Zitat Lachenbruch B, Johnson GR, Downes GM, Evans R (2009) Relationships pf density, microfibril angle and sound velocity with stiffness and strength in mature wood of Doughlas-fir. NRC Resrarch Press 40:55–64 Lachenbruch B, Johnson GR, Downes GM, Evans R (2009) Relationships pf density, microfibril angle and sound velocity with stiffness and strength in mature wood of Doughlas-fir. NRC Resrarch Press 40:55–64
Zurück zum Zitat Liu M, Peng L, Lyu S, Lyu J (2020) Properties of common tropical hardwoods for fretboard of string instruments. J Wood Sci 66(1):1–11CrossRef Liu M, Peng L, Lyu S, Lyu J (2020) Properties of common tropical hardwoods for fretboard of string instruments. J Wood Sci 66(1):1–11CrossRef
Zurück zum Zitat Obataya E, Ono T, Norimoto M (2000) Vibrational properties of wood along the grain. J Mater Sci 35(12):2993–3001CrossRef Obataya E, Ono T, Norimoto M (2000) Vibrational properties of wood along the grain. J Mater Sci 35(12):2993–3001CrossRef
Zurück zum Zitat Ono T, Norimoto M (1983) Study on Young's modulus and internal friction of wood in relation to the evaluation of wood for musical instruments. Jpn J Appl Phys 22(4R):611CrossRef Ono T, Norimoto M (1983) Study on Young's modulus and internal friction of wood in relation to the evaluation of wood for musical instruments. Jpn J Appl Phys 22(4R):611CrossRef
Zurück zum Zitat Rujinirun C, Phinyocheep P, Prachyabrued W, Laemsak N (2005) Chemical treatment of wood for musical instruments. Part I: acoustically important properties of wood for the Ranad (Thai traditional xylophone). Wood Sci Technol 39(1):77–85CrossRef Rujinirun C, Phinyocheep P, Prachyabrued W, Laemsak N (2005) Chemical treatment of wood for musical instruments. Part I: acoustically important properties of wood for the Ranad (Thai traditional xylophone). Wood Sci Technol 39(1):77–85CrossRef
Zurück zum Zitat Sedik Y, Hamdan S, Jusoh I, Hasan M (2010) Acoustic properties of selected tropical wood species. J Nondestr Eval 29(1):38–42CrossRef Sedik Y, Hamdan S, Jusoh I, Hasan M (2010) Acoustic properties of selected tropical wood species. J Nondestr Eval 29(1):38–42CrossRef
Zurück zum Zitat Sproßmann R, Zauer M, Wagenführ A (2017) Characterization of acoustic and mechanical properties of common tropical woods used in classical guitars. Results Phys 7:1737–1742CrossRef Sproßmann R, Zauer M, Wagenführ A (2017) Characterization of acoustic and mechanical properties of common tropical woods used in classical guitars. Results Phys 7:1737–1742CrossRef
Zurück zum Zitat Spycher M, Schwarze FW, Steiger R (2008) Assessment of resonance wood quality by comparing its physical and histological properties. Wood Sci Technol 42(4):325–342CrossRef Spycher M, Schwarze FW, Steiger R (2008) Assessment of resonance wood quality by comparing its physical and histological properties. Wood Sci Technol 42(4):325–342CrossRef
Zurück zum Zitat Stanciu MD, Curtu I, Mocanu T (2014) Mechanical behavior of guitar neck under simple bending stress analyzed with finite elements method. Appl Mech Mater 658(2014):225–230CrossRef Stanciu MD, Curtu I, Mocanu T (2014) Mechanical behavior of guitar neck under simple bending stress analyzed with finite elements method. Appl Mech Mater 658(2014):225–230CrossRef
Zurück zum Zitat Traore B, Brancheriau L, Perre P, Stevanovic T, Diouf P (2010) Acoustic quality of vène wood (Pterocarpus erinaceus Poir.) for xylophone instrument manufacture in Mali. Ann For Sci 67(2010):815–822CrossRef Traore B, Brancheriau L, Perre P, Stevanovic T, Diouf P (2010) Acoustic quality of vène wood (Pterocarpus erinaceus Poir.) for xylophone instrument manufacture in Mali. Ann For Sci 67(2010):815–822CrossRef
Zurück zum Zitat Wegst UGK (2008) Bamboo and wood in musical instruments. Ann Rev Mater Res 38:323–349CrossRef Wegst UGK (2008) Bamboo and wood in musical instruments. Ann Rev Mater Res 38:323–349CrossRef
Zurück zum Zitat Wiemann MC (2010) Characteristics and availability of commercially important woods. Wood handbook: wood as an engineering material: chapter 2. Centennial ed. General technical report FPL; GTR-190, vol 190. US Dept. of Agriculture, Forest Service, Forest Products Laboratory, Madison, pp 2.1–2.45 Wiemann MC (2010) Characteristics and availability of commercially important woods. Wood handbook: wood as an engineering material: chapter 2. Centennial ed. General technical report FPL; GTR-190, vol 190. US Dept. of Agriculture, Forest Service, Forest Products Laboratory, Madison, pp 2.1–2.45
Zurück zum Zitat Yoshikawa S (2007) Acoustical classification of woods for string instruments. J Acoust Soc Am 122(1):568–573CrossRef Yoshikawa S (2007) Acoustical classification of woods for string instruments. J Acoust Soc Am 122(1):568–573CrossRef
Zurück zum Zitat Yoshikawa S, Waltham C (2014) Woods for wooden musical instruments. ISMA, Le Mans Yoshikawa S, Waltham C (2014) Woods for wooden musical instruments. ISMA, Le Mans
Metadaten
Titel
Determining acoustic and mechanical properties of Australian native hardwood species for guitar fretboard production
verfasst von
Maryam Shirmohammadi
Adam Faircloth
Adam Redman
Publikationsdatum
18.09.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
European Journal of Wood and Wood Products / Ausgabe 6/2020
Print ISSN: 0018-3768
Elektronische ISSN: 1436-736X
DOI
https://doi.org/10.1007/s00107-020-01599-6

Weitere Artikel der Ausgabe 6/2020

European Journal of Wood and Wood Products 6/2020 Zur Ausgabe