2015 | OriginalPaper | Buchkapitel
Tipp
Weitere Kapitel dieses Buchs durch Wischen aufrufen
Erschienen in:
Transactions on Edutainment XI
In constructing a parametric curve interpolating a set of data points, one of the key problems is to specify a parameter value (node) for each data point. A new method of choosing knots is presented. For each data points, the new method constructs a quadratic polynomial curve by three adjacent data points. The node parameters of the quadratic curve are determined by minimizing the second derivative of the quadratic curve. And the knot interval between two adjacent data points is determined by two quadratic curves associated with the two adjacent data points. Experiments showed that the curves constructed using the knots by the new method generally have better interpolation precision.
Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten
Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:
Anzeige
1.
Zurück zum Zitat Brodlie, K.W.: A review of methods for curve and function drawing. In: Brodlie, K.W. (ed.) Mathematical Methods in Computer Graphics and Design, pp. 1–37. Academic Press, London (1980) Brodlie, K.W.: A review of methods for curve and function drawing. In: Brodlie, K.W. (ed.) Mathematical Methods in Computer Graphics and Design, pp. 1–37. Academic Press, London (1980)
2.
Zurück zum Zitat Su, B., Liu, D.: Computational Geometry, p. 49. Shanghai Academic Press, Shanghai (1982). (in Chinese) Su, B., Liu, D.: Computational Geometry, p. 49. Shanghai Academic Press, Shanghai (1982). (in Chinese)
3.
Zurück zum Zitat Li, W., Xu, S., Zheng, S., Zhao, G.: Target curvature driven fairing algorithm for planar cubic B-spline curves. Comput. Aided Geom. Des. 21(5), 499–513 (2004) MATHCrossRef Li, W., Xu, S., Zheng, S., Zhao, G.: Target curvature driven fairing algorithm for planar cubic B-spline curves. Comput. Aided Geom. Des.
21(5), 499–513 (2004)
MATHCrossRef
4.
Zurück zum Zitat Ahlberg, J.H., Nilson, E.N., Walsh, J.L.: The Theory of Splines and Their Applications, p. 51. Academic Press, New York (1967) MATH Ahlberg, J.H., Nilson, E.N., Walsh, J.L.: The Theory of Splines and Their Applications, p. 51. Academic Press, New York (1967)
MATH
5.
Zurück zum Zitat De Boor, C.: A practical Guide to Splines, p. 318. Springer, New York (1978) MATHCrossRef De Boor, C.: A practical Guide to Splines, p. 318. Springer, New York (1978)
MATHCrossRef
6.
Zurück zum Zitat Faux, I.D., Pratt, M.J.: Computational Geometry for Design and Manufacture, p. 176. Ellis Horwood, New York (1979) MATH Faux, I.D., Pratt, M.J.: Computational Geometry for Design and Manufacture, p. 176. Ellis Horwood, New York (1979)
MATH
7.
Zurück zum Zitat Farin, G.: Curves and Surfaces for Computer Aided Geometric Design: A Practical Guide, p. 111. Academic press, New York (1989) Farin, G.: Curves and Surfaces for Computer Aided Geometric Design: A Practical Guide, p. 111. Academic press, New York (1989)
8.
Zurück zum Zitat Lee, E.T.Y.: Choosing nodes in parametric curve interpolation. CAD 21(6), 363–370 (1989) MATH Lee, E.T.Y.: Choosing nodes in parametric curve interpolation. CAD
21(6), 363–370 (1989)
MATH
9.
Zurück zum Zitat Zhang, C., Cheng, F., Miura, K.: A method for determining knots in parametric curve interpolation. CAGD 15, 399–416 (1998) MATHMathSciNet Zhang, C., Cheng, F., Miura, K.: A method for determining knots in parametric curve interpolation. CAGD
15, 399–416 (1998)
MATHMathSciNet
10.
Zurück zum Zitat Zhang, C., Han, H., Cheng, F.: Determining knots by minimizing energy. J. Comput. Sci. Technol. 21(6), 261–264 (2006) MATHCrossRef Zhang, C., Han, H., Cheng, F.: Determining knots by minimizing energy. J. Comput. Sci. Technol.
21(6), 261–264 (2006)
MATHCrossRef
11.
Zurück zum Zitat Hartley, P.J., Judd, C.J.: Parametrization and shape of B-spline curves for CAD. CAD 12(5), 235–238 (1980) Hartley, P.J., Judd, C.J.: Parametrization and shape of B-spline curves for CAD. CAD
12(5), 235–238 (1980)
12.
Zurück zum Zitat Marin, S.P.: An approach to data parametrization in parametric cubic spline interpolation problems. J. Approximation Theor. 41, 64–86 (1984) MATHCrossRef Marin, S.P.: An approach to data parametrization in parametric cubic spline interpolation problems. J. Approximation Theor.
41, 64–86 (1984)
MATHCrossRef
13.
Zurück zum Zitat Xie, H., Qin, H.: A novel optimization approach to the effective computation of NURBS knots. Int. J. Shape Model. 7(2), 199–227 (2001) CrossRef Xie, H., Qin, H.: A novel optimization approach to the effective computation of NURBS knots. Int. J. Shape Model.
7(2), 199–227 (2001)
CrossRef
14.
Zurück zum Zitat Gotsman, C., Gu, X., Sheffer, A.: Fundamentals of spherical parameterization for 3D meshes. In: Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, pp. 358–363. ACM Press, San Diego (2003) Gotsman, C., Gu, X., Sheffer, A.: Fundamentals of spherical parameterization for 3D meshes. In: Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, pp. 358–363. ACM Press, San Diego (2003)
15.
Zurück zum Zitat Gu, X., Yau, S.-T.: Global conformal surface parameterization. In: ACM Symposium on Geometry Processing, pp. 127–137. ACM Press, San Diego (2003) Gu, X., Yau, S.-T.: Global conformal surface parameterization. In: ACM Symposium on Geometry Processing, pp. 127–137. ACM Press, San Diego (2003)
16.
Zurück zum Zitat Floater, M.S.: Reimers M1 meshless parameterization and surface reconstruction. Comput. Aided Geom. Des. 18(2), 77–92 (2001) MATHMathSciNetCrossRef Floater, M.S.: Reimers M1 meshless parameterization and surface reconstruction. Comput. Aided Geom. Des.
18(2), 77–92 (2001)
MATHMathSciNetCrossRef
- Titel
- Determining Knots by Minimizing the Second Derivative
- DOI
- https://doi.org/10.1007/978-3-662-48247-6_12
- Autoren:
-
Fan Zhang
Xueying Qin
- Verlag
- Springer Berlin Heidelberg
- Sequenznummer
- 12