Skip to main content
Erschienen in: Quantum Information Processing 8/2020

01.08.2020

Deterministic bidirectional controlled remote preparation without information splitting

verfasst von: Songya Ma, Li Gong

Erschienen in: Quantum Information Processing | Ausgabe 8/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

By using a five-qubit entangled state as the quantum channel, we propose an efficient protocol for implementing bidirectional controlled remote preparation of arbitrary single-qubit states with unit success probability. The senders do not need to perform information splitting and additional unitary operations due to the elaborately constructed measurement basis. Furthermore, three-bit classical communication can be saved at the controller’s broadcast channel with the aid of network coding. Then, we consider the effect of five-type noises on the proposed protocol. It is found that the fidelities of the output states are dependent on the coefficients of the prepared state and the noise parameter. Interestingly, the fidelity is irrelevant to the participators’ measurement results except in the amplitude-damping and phase-damping noises.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Ma, S.Y., Chen, X.B., Luo, M.X., Niu, X.X., Yang, Y.X.: Probabilistic quantum network coding of M-qudit states over the butterfly network. Opt. Commun. 283(3), 497–501 (2010)ADS Ma, S.Y., Chen, X.B., Luo, M.X., Niu, X.X., Yang, Y.X.: Probabilistic quantum network coding of M-qudit states over the butterfly network. Opt. Commun. 283(3), 497–501 (2010)ADS
2.
Zurück zum Zitat Xu, G., Chen, X.B., Li, J., Wang, C., Yang, Y.X., Li, Z.P.: Network coding for quantum cooperative multicast. Quantum Inf. Process. 14(11), 4297–4322 (2015)ADSMathSciNetMATH Xu, G., Chen, X.B., Li, J., Wang, C., Yang, Y.X., Li, Z.P.: Network coding for quantum cooperative multicast. Quantum Inf. Process. 14(11), 4297–4322 (2015)ADSMathSciNetMATH
3.
Zurück zum Zitat Li, Z.Z., Xu, G., Chen, X.B., Qu, Z.G., Niu, X.X., Yang, Y.X.: Efficient quantum state transmission via perfect quantum network coding. Sci. China Inf. Sci. 62(1), 012501 (2019) Li, Z.Z., Xu, G., Chen, X.B., Qu, Z.G., Niu, X.X., Yang, Y.X.: Efficient quantum state transmission via perfect quantum network coding. Sci. China Inf. Sci. 62(1), 012501 (2019)
4.
Zurück zum Zitat Gong, L.H., Tian, C., Li, J.F., Zou, X.F.: Quantum network dialogue protocol based on continuous-variable GHZ states. Quantum Inf. Process. 17(12), 331 (2018)ADSMathSciNetMATH Gong, L.H., Tian, C., Li, J.F., Zou, X.F.: Quantum network dialogue protocol based on continuous-variable GHZ states. Quantum Inf. Process. 17(12), 331 (2018)ADSMathSciNetMATH
5.
Zurück zum Zitat Zhou, N.R., Zhu, K.N., Zou, X.F.: Quantum communication: multi-party semi-quantum key distribution protocol with four-particle cluster states. Ann. Phys. 531(8), 1800520 (2019)MathSciNet Zhou, N.R., Zhu, K.N., Zou, X.F.: Quantum communication: multi-party semi-quantum key distribution protocol with four-particle cluster states. Ann. Phys. 531(8), 1800520 (2019)MathSciNet
6.
Zurück zum Zitat Lo, H.K.: Classical-communication cost indistributed quantum-information processing: a generalization of quantum-communication complexity. Phys. Rev. A 62(1), 012313 (2000)ADS Lo, H.K.: Classical-communication cost indistributed quantum-information processing: a generalization of quantum-communication complexity. Phys. Rev. A 62(1), 012313 (2000)ADS
7.
Zurück zum Zitat Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70(13), 1895–1899 (1993)ADSMathSciNetMATH Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70(13), 1895–1899 (1993)ADSMathSciNetMATH
8.
Zurück zum Zitat Pati, A.K.: Minimum classical bit for remote preparation and measurement of a qubit. Phys. Rev. A 63(1), 014302 (2001)ADS Pati, A.K.: Minimum classical bit for remote preparation and measurement of a qubit. Phys. Rev. A 63(1), 014302 (2001)ADS
9.
Zurück zum Zitat Chen, Q.Q., Xia, Y., Song, J.: Probabilistic joint remote preparation of a two particle high-dimensional equatorial state. Opt. Commun. 284(20), 5031–5035 (2011)ADS Chen, Q.Q., Xia, Y., Song, J.: Probabilistic joint remote preparation of a two particle high-dimensional equatorial state. Opt. Commun. 284(20), 5031–5035 (2011)ADS
10.
Zurück zum Zitat Zhang, Z.H., Shu, L., Mo, Z.W., Zheng, J., Ma, S.Y., Luo, M.X.: Joint remote state preparation between multi-sender and multi-receiver. Quantum Inf. Process. 13(9), 1979–2005 (2014)ADSMathSciNetMATH Zhang, Z.H., Shu, L., Mo, Z.W., Zheng, J., Ma, S.Y., Luo, M.X.: Joint remote state preparation between multi-sender and multi-receiver. Quantum Inf. Process. 13(9), 1979–2005 (2014)ADSMathSciNetMATH
11.
Zurück zum Zitat Ma, S.Y., Gao, C., Luo, M.X.: Effcient schemes of joint remote preparation with a passive receiver via EPR pairs. Chin. Phys. B 24(11), 110308 (2015)ADS Ma, S.Y., Gao, C., Luo, M.X.: Effcient schemes of joint remote preparation with a passive receiver via EPR pairs. Chin. Phys. B 24(11), 110308 (2015)ADS
12.
Zurück zum Zitat Wu, N.N., Jiang, M.: A highly efficient scheme for joint remote preparation of multi-qubit W state with minimum quantum resource. Quantum Inf. Process. 17(12), 340 (2018)ADSMathSciNetMATH Wu, N.N., Jiang, M.: A highly efficient scheme for joint remote preparation of multi-qubit W state with minimum quantum resource. Quantum Inf. Process. 17(12), 340 (2018)ADSMathSciNetMATH
13.
Zurück zum Zitat Chen, X.B., Ma, S.Y., Su, Y., Zhang, R., Yang, Y.X.: Controlled remote state preparation of arbitrary two- and three-qubit states via the Brown state. Quantum Inf. Process. 11(6), 1653–1667 (2012)ADSMathSciNetMATH Chen, X.B., Ma, S.Y., Su, Y., Zhang, R., Yang, Y.X.: Controlled remote state preparation of arbitrary two- and three-qubit states via the Brown state. Quantum Inf. Process. 11(6), 1653–1667 (2012)ADSMathSciNetMATH
14.
Zurück zum Zitat Gao, C., Ma, S.Y., Chen, W.L.: Controlled remote preparation via the Brown state with no restriction. Int. J. Theor. Phys. 55(5), 2643–2652 (2016)MATH Gao, C., Ma, S.Y., Chen, W.L.: Controlled remote preparation via the Brown state with no restriction. Int. J. Theor. Phys. 55(5), 2643–2652 (2016)MATH
15.
Zurück zum Zitat Chen, W.L., Ma, S.Y., Qu, Z.G.: Controlled remote preparation of an arbitrary four-qubit cluster-type state. Chin. Phys. B 25(10), 100304 (2016)ADS Chen, W.L., Ma, S.Y., Qu, Z.G.: Controlled remote preparation of an arbitrary four-qubit cluster-type state. Chin. Phys. B 25(10), 100304 (2016)ADS
16.
Zurück zum Zitat Ma, P.C., Chen, G.B., Li, X.W., Zhan, Y.B.: Hierarchically controlled remote preparation of an arbitrary single-qubit state by using a four-qubit \(\chi \) entangled state. Quantum Inf. Process. 17(5), 105 (2018)ADSMathSciNetMATH Ma, P.C., Chen, G.B., Li, X.W., Zhan, Y.B.: Hierarchically controlled remote preparation of an arbitrary single-qubit state by using a four-qubit \(\chi \) entangled state. Quantum Inf. Process. 17(5), 105 (2018)ADSMathSciNetMATH
17.
Zurück zum Zitat Devetak, I., Berger, T.: Low-entanglement remote state preparation. Phys. Rev. Lett. 87(19), 197901 (2001)ADS Devetak, I., Berger, T.: Low-entanglement remote state preparation. Phys. Rev. Lett. 87(19), 197901 (2001)ADS
18.
Zurück zum Zitat Berry, D.W., Sanders, B.C.: Optimal remote state preparation. Phys. Rev. Lett. 90(5), 057901 (2003)ADS Berry, D.W., Sanders, B.C.: Optimal remote state preparation. Phys. Rev. Lett. 90(5), 057901 (2003)ADS
19.
Zurück zum Zitat Leung, D.W., Shor, P.W.: Oblivious remote state preparation. Phys. Rev. Lett. 90(12), 127905 (2003)ADS Leung, D.W., Shor, P.W.: Oblivious remote state preparation. Phys. Rev. Lett. 90(12), 127905 (2003)ADS
20.
Zurück zum Zitat Ma, S.Y., Luo, M.X., Chen, X.B., Yang, Y.X.: Schemes for remotely preparing an arbitrary four-qubit \(\chi \)-state. Quant. Inf. Process. 13(9), 1951–1965 (2014)ADSMathSciNetMATH Ma, S.Y., Luo, M.X., Chen, X.B., Yang, Y.X.: Schemes for remotely preparing an arbitrary four-qubit \(\chi \)-state. Quant. Inf. Process. 13(9), 1951–1965 (2014)ADSMathSciNetMATH
21.
Zurück zum Zitat Ma, S.Y., Gao, C., Zhang, P., Qu, Z.G.: Deterministic remote preparation via the Brown state. Quantum Inf. Process. 16(4), 93 (2017)ADSMathSciNetMATH Ma, S.Y., Gao, C., Zhang, P., Qu, Z.G.: Deterministic remote preparation via the Brown state. Quantum Inf. Process. 16(4), 93 (2017)ADSMathSciNetMATH
22.
Zurück zum Zitat Peng, X.H., Zhu, X.W., Fang, X.M., Feng, M., Liu, M.L., Gao, K.L.: Experimental implementation of remote state preparation by nuclear magnetic resonance. Phys. Lett. A 306(5–6), 271–276 (2003)ADS Peng, X.H., Zhu, X.W., Fang, X.M., Feng, M., Liu, M.L., Gao, K.L.: Experimental implementation of remote state preparation by nuclear magnetic resonance. Phys. Lett. A 306(5–6), 271–276 (2003)ADS
23.
Zurück zum Zitat Rosenfeld, W., Berner, S., Volz, J., Weber, M., Weinfurter, H.: Remote preparation of an atomic quantum memory. Phys. Rev. Lett. 98(5), 050504 (2007)ADS Rosenfeld, W., Berner, S., Volz, J., Weber, M., Weinfurter, H.: Remote preparation of an atomic quantum memory. Phys. Rev. Lett. 98(5), 050504 (2007)ADS
24.
Zurück zum Zitat Barreiro, J.T., Wei, T.C., Kwiat, P.G.: Remote preparation of single-photon “hybrid” entangled and vectorpolarization states. Phys. Rev. Lett. 105(3), 030407 (2010)ADS Barreiro, J.T., Wei, T.C., Kwiat, P.G.: Remote preparation of single-photon “hybrid” entangled and vectorpolarization states. Phys. Rev. Lett. 105(3), 030407 (2010)ADS
25.
Zurück zum Zitat Erhard, M., Qassim, H., Mand, H., Karimi, E., Boyd, R.W.: Real-time imaging of spin-to-orbital angular momentum hybrid remote state preparation. Phys. Rev. A 92(2), 022321 (2015)ADS Erhard, M., Qassim, H., Mand, H., Karimi, E., Boyd, R.W.: Real-time imaging of spin-to-orbital angular momentum hybrid remote state preparation. Phys. Rev. A 92(2), 022321 (2015)ADS
26.
Zurück zum Zitat Cao, T.B., An, N.B.: Deterministic controlled bidirectional remote state preparation. Adv. Nat. Sci. Nanosci. Nanotechnol. 5(1), 015003 (2014)ADS Cao, T.B., An, N.B.: Deterministic controlled bidirectional remote state preparation. Adv. Nat. Sci. Nanosci. Nanotechnol. 5(1), 015003 (2014)ADS
27.
Zurück zum Zitat Sharma, V., Shukla, C., Banerjee, S., Pathak, A.: Controlled bidirectional remote state preparation in noisy environment: a generalized view. Quantum Inf. Process. 14(9), 3441–3464 (2015)ADSMathSciNetMATH Sharma, V., Shukla, C., Banerjee, S., Pathak, A.: Controlled bidirectional remote state preparation in noisy environment: a generalized view. Quantum Inf. Process. 14(9), 3441–3464 (2015)ADSMathSciNetMATH
28.
Zurück zum Zitat Peng, J.Y., Bai, M.Q., Mo, Z.W.: Bidirectional controlled joint remote state preparation. Quantum Inf. Process. 14(11), 4263–4278 (2015)ADSMathSciNetMATH Peng, J.Y., Bai, M.Q., Mo, Z.W.: Bidirectional controlled joint remote state preparation. Quantum Inf. Process. 14(11), 4263–4278 (2015)ADSMathSciNetMATH
29.
Zurück zum Zitat Zhang, D., Zha, X.W., Duan, Y.J., Yang, Y.Q.: Deterministic controlled bidirectional remote state preparation via a six-qubit entangled state. Quantum Inf. Process. 15(5), 2169–2179 (2016)ADSMathSciNetMATH Zhang, D., Zha, X.W., Duan, Y.J., Yang, Y.Q.: Deterministic controlled bidirectional remote state preparation via a six-qubit entangled state. Quantum Inf. Process. 15(5), 2169–2179 (2016)ADSMathSciNetMATH
30.
Zurück zum Zitat Zhang, D., Zha, X.W., Duan, Y.J., Wei, Z.H.: Deterministic controlled bidirectional remote state preparation via a six-qubit maximally entangled state. Int. J. Theor. Phys. 55(1), 440–446 (2016)MATH Zhang, D., Zha, X.W., Duan, Y.J., Wei, Z.H.: Deterministic controlled bidirectional remote state preparation via a six-qubit maximally entangled state. Int. J. Theor. Phys. 55(1), 440–446 (2016)MATH
31.
Zurück zum Zitat Wang, X.Y., Mo, Z.W.: Bidirectional controlled joint remote state preparation via a seven-qubit entangled state. Int. J. Theor. Phys. 56(4), 1052–1058 (2017)MATH Wang, X.Y., Mo, Z.W.: Bidirectional controlled joint remote state preparation via a seven-qubit entangled state. Int. J. Theor. Phys. 56(4), 1052–1058 (2017)MATH
32.
Zurück zum Zitat Chen, X.B., Sun, Y.R., Xu, G., Jia, H.Y., Qu, Z.G., Yang, Y.X.: Controlled bidirectional remote preparation of three-qubit state. Quantum Inf. Process. 16(10), 244 (2017)ADSMATH Chen, X.B., Sun, Y.R., Xu, G., Jia, H.Y., Qu, Z.G., Yang, Y.X.: Controlled bidirectional remote preparation of three-qubit state. Quantum Inf. Process. 16(10), 244 (2017)ADSMATH
33.
Zurück zum Zitat Ma, P.C., Chen, G.B., Li, X.W., Zhang, J., Zhan, Y.B.: Asymmetric controlled bidirectional remote state preparation by using a ten-qubit entangled state. Int. J. Theor. Phys. 56(9), 2716–2723 (2017)MathSciNetMATH Ma, P.C., Chen, G.B., Li, X.W., Zhang, J., Zhan, Y.B.: Asymmetric controlled bidirectional remote state preparation by using a ten-qubit entangled state. Int. J. Theor. Phys. 56(9), 2716–2723 (2017)MathSciNetMATH
34.
Zurück zum Zitat Ma, P.C., Chen, G.B., Li, X.W., Zhan, Y.B.: Asymmetric bidirectional controlled remote preparation of an arbitrary four-qubit cluster-type state and a single-qubit state. Quantum Inf. Process. 16(12), 308 (2017)ADSMathSciNetMATH Ma, P.C., Chen, G.B., Li, X.W., Zhan, Y.B.: Asymmetric bidirectional controlled remote preparation of an arbitrary four-qubit cluster-type state and a single-qubit state. Quantum Inf. Process. 16(12), 308 (2017)ADSMathSciNetMATH
35.
Zurück zum Zitat Sun, Y.R., Chen, X.B., Xu, G., Yuan, K.G., Yang, Y.X.: Asymmetric controlled bidirectional remote preparation of two- and three-qubit equatorial state. Sci. Rep. 9, 2081 (2019)ADS Sun, Y.R., Chen, X.B., Xu, G., Yuan, K.G., Yang, Y.X.: Asymmetric controlled bidirectional remote preparation of two- and three-qubit equatorial state. Sci. Rep. 9, 2081 (2019)ADS
36.
Zurück zum Zitat Sun, Y.R., Xiang, N., Dou, Z., Xu, G., Chen, X.B., Yang, Y.X.: A universal protocol for controlled bidirectional quantum state transmission. Quantum Inf. Process. 18(9), 281 (2019)ADSMathSciNet Sun, Y.R., Xiang, N., Dou, Z., Xu, G., Chen, X.B., Yang, Y.X.: A universal protocol for controlled bidirectional quantum state transmission. Quantum Inf. Process. 18(9), 281 (2019)ADSMathSciNet
37.
Zurück zum Zitat Ahlswede, R., Cai, N., Li, S.-Y.R., Yeung, R.W.: Network information flow. IEEE Trans. Inf. Theor. 46(4), 1204–1216 (2000)MathSciNetMATH Ahlswede, R., Cai, N., Li, S.-Y.R., Yeung, R.W.: Network information flow. IEEE Trans. Inf. Theor. 46(4), 1204–1216 (2000)MathSciNetMATH
38.
Zurück zum Zitat Ling, X.T.: Classical information capacities of some single qubit quantum noisy channels. Commun. Theor. Phys. 39(5), 537–542 (2003)ADSMathSciNet Ling, X.T.: Classical information capacities of some single qubit quantum noisy channels. Commun. Theor. Phys. 39(5), 537–542 (2003)ADSMathSciNet
39.
Zurück zum Zitat Wang, M.M., Qu, Z.G., Wang, W., Chen, J.G.: Effect of noise on deterministic joint remote preparation of an arbitrary two-qubit state. Quantum Inf. Process. 16(5), 140 (2017)ADSMATH Wang, M.M., Qu, Z.G., Wang, W., Chen, J.G.: Effect of noise on deterministic joint remote preparation of an arbitrary two-qubit state. Quantum Inf. Process. 16(5), 140 (2017)ADSMATH
40.
Zurück zum Zitat Felloni, S., Strini, G.: An error model for the Cirac–Zoller CNOT gate. Quantum Commun. and Quantum Net. 36, 210 (2010)ADSMATH Felloni, S., Strini, G.: An error model for the Cirac–Zoller CNOT gate. Quantum Commun. and Quantum Net. 36, 210 (2010)ADSMATH
41.
Zurück zum Zitat Wang, H.F., Wen, J.J., Zhu, A.D., Zhang, S., Yeon, K.H.: Deterministic CNOT gate and entanglement swapping for photonic qubits using a quantum-dot spin in a double-sided optical microcavity. Phys. Lett. A 377(40), 2870–2876 (2013)ADSMATH Wang, H.F., Wen, J.J., Zhu, A.D., Zhang, S., Yeon, K.H.: Deterministic CNOT gate and entanglement swapping for photonic qubits using a quantum-dot spin in a double-sided optical microcavity. Phys. Lett. A 377(40), 2870–2876 (2013)ADSMATH
42.
Zurück zum Zitat Gueddana, A., Gholami, P., Lakshminarayanan, V.: Can a universal quantum cloner be used to design an experimentally feasible near-deterministic CNOT gate? Quantum Inf. Process. 18(7), 221 (2019)ADS Gueddana, A., Gholami, P., Lakshminarayanan, V.: Can a universal quantum cloner be used to design an experimentally feasible near-deterministic CNOT gate? Quantum Inf. Process. 18(7), 221 (2019)ADS
43.
Zurück zum Zitat Ferraro, E., Fanciulli, M., De Michielis, M.: Controlled-NOT gate sequences for mixed spin qubit architectures in a noisy environment. Quantum Inf. Process. 16(11), 277 (2017)ADSMathSciNetMATH Ferraro, E., Fanciulli, M., De Michielis, M.: Controlled-NOT gate sequences for mixed spin qubit architectures in a noisy environment. Quantum Inf. Process. 16(11), 277 (2017)ADSMathSciNetMATH
44.
Zurück zum Zitat Procopio, L.M., Moqanaki, A., Araujo, M., Costa, F., Calafell, I.A., Dowd, E.G., Hamel, D.R., Rozema, L.A., Brukner, C., Walther, P.: Experimental superposition of orders of quantum gates. Nat. Commun. 6, 7913 (2015)ADS Procopio, L.M., Moqanaki, A., Araujo, M., Costa, F., Calafell, I.A., Dowd, E.G., Hamel, D.R., Rozema, L.A., Brukner, C., Walther, P.: Experimental superposition of orders of quantum gates. Nat. Commun. 6, 7913 (2015)ADS
45.
Zurück zum Zitat Rosenblum, S., Gao, Y.Y., Reinhold, P., Wang, C., Axline, C.J., Frunzio, L., Girvin, S.M., Jiang, L., Mirrahimi, M., Devoret, M.H., Schoelkopf, R.J.: A CNOT gate between multiphoton qubits encoded in two cavities. Nat. Commun. 9, 652 (2018)ADS Rosenblum, S., Gao, Y.Y., Reinhold, P., Wang, C., Axline, C.J., Frunzio, L., Girvin, S.M., Jiang, L., Mirrahimi, M., Devoret, M.H., Schoelkopf, R.J.: A CNOT gate between multiphoton qubits encoded in two cavities. Nat. Commun. 9, 652 (2018)ADS
46.
Zurück zum Zitat Zajac, D.M., Sigillito, A.J., Russ, M., Borjans, F., Taylor, J.M., Burkard, G., Petta, J.R.: Resonantly driven CNOT gate for electron spins. Science. 359(6374), 439–442 (2018)ADSMathSciNetMATH Zajac, D.M., Sigillito, A.J., Russ, M., Borjans, F., Taylor, J.M., Burkard, G., Petta, J.R.: Resonantly driven CNOT gate for electron spins. Science. 359(6374), 439–442 (2018)ADSMathSciNetMATH
Metadaten
Titel
Deterministic bidirectional controlled remote preparation without information splitting
verfasst von
Songya Ma
Li Gong
Publikationsdatum
01.08.2020
Verlag
Springer US
Erschienen in
Quantum Information Processing / Ausgabe 8/2020
Print ISSN: 1570-0755
Elektronische ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-020-02760-z

Weitere Artikel der Ausgabe 8/2020

Quantum Information Processing 8/2020 Zur Ausgabe

Neuer Inhalt